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; 5.70 Excess over a smooth background!

We saw that we can use CATHODE?! to find real signals in real data!

We found something > 50! We can declare victory.

<~ Tryour curated Upsilon benchmark!
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We saw that we can use CATHODE?! to find real signals in real data!

We found something > 50! We can declare victory.
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This Talk: We aren’t finished winning! Let’s improve sensitivity further, with no l
]

additional work, with likelihood-based reweighting! . 4 6.40 < -
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Likelihood-based Reweightin
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4. Perform an ordinary mass
L(S;N) = Nlog(B +5) — (B +5) bump-hunt on the surviving
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o [f(m; 0)] dm statistics

Signal Region

f(m;0) = Poisson Likelihood fit to SB
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Weight The
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samples to compare against.

Events

3x 102

2. Train aclassifier between the

data and background. Weight each event x

using some weight
function w(x).

2x 102

3. Cutontheclassifier to enrich
th S ractj

102

|  The best weight

4. Perform an ordinary mass . functionis the
L(S; N, w;) = Scaled Poisson Likelihood with bump-hunt on the Surviving Slgnal'tO'baCkgrOU nd

A =S+ B,moment = (w?) / (w) likelihood ratio, but

samples, compute test . Rt
any weight function is

B= -0)] d statistics .
Signal Region[f(m )] o Val'd'

f(m;8) = Scaled Poisson Likelihood fit to SB
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V‘gﬁht . .
~and-Count Anomaly Detection (Details)

The effect of weighting is to replace Poissons with Weighted (Compound?) Poissons

N N
Neuws = Z@(f(xi) - fcut) — > Nw = Zw(zz)

Observable: Bin Count N Observable: Weighted Bin Count, dependsonNand (w)

. Weight each event x
POIS(N; )\) > CPD(Nw; )\,p(’w)) using some weight

function w(x).

Poissonian Bin Counts Compound-Poissonian Bin Counts

X .
o Depends on the weight
. . . _ I .

Net effect is to alter the first and = distribution - but not strongly! 'I;he be.st Vyeliht
second moments of the Poisson: < , ulnctlgn 'it < g
Nice in the asymptotic limit! SPD{ Ny A, <w2>) signa’-to-backgroun
Weighted Bump Hunts! likelihood ratio, but

) Tractable approximation to CPD any weight function is

valid!




Likelihood-based Reweighting

1. What did we do?

. . 1o 5 [ dz S(z)w(z)
2, Why dld we dO It. \/f dz B(z)w?(z)

Near-Optimality
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"Anything reasonable — no weight distributions with infinite variance! [Neyman, Pearson; On_the problem of the
“Nice property: The SPD is invariant under weight rescaling. So, no free power just by doubling weights! mnost e7fficien,t tests of statistica

The Optimal Weights

[RG, Mastandrea, Nachman, Thaler; 2502 .1403¢]

What weight function should we choose? Anything is valid!”
If you use your classifier to classify, that corresponds to choosing weights of O or 1. But:

1. You have to choose a classification threshold (a working point).
2. Information about how signal or background like an event is gets lost.

Classifier scores are more than just scores — by Neyman-Pearson, they’re Likelihood Ratios!

Claim: Choosing the weight function to be the signal-to-background per-event likelihood
ratio provides (near)-optimal sensitivity!

This is essentially a free increase in sensitivity just by using the fact
that classifiers learn the likelihood ratio, plus we don't have to pick
a cut working point!.

The worst thing to do with a classifier is classify!
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Sketch of Proof

For simplicity, assume we are doing a single-bin counting experiment in the

asymptotic limit with known signal.” Let’s allow every event to have a weight
w .

The total number of events is now:
S = /dw S(x)w(z); Bug= /dw B(z)w(z)

The “significance” is:

Large
wWet J hts

Small
1ghts
| wet 7 J dz S(z)w(z) (Generalizes Z = A

- \/f dx B(x)w?(x) v
The Likelihood Ratio!

We can then calculate what choice of S(x)  Nsi

€Tr) =
weights optimizes the significance: (@) B(z) /NBk PBkg ()
Unimportant Constants

D Wei 3ht
[ -
3 >
)

“In the full analysis, we do a complete Poisson likelihood treatment with nuisance parameters due to fits.

When these are included, these weights may not be strictly optimal, but they are still better than nothing!
"Ordinary cutting can be seen as assigning a weight of O.
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Last Ingredient: Estimating the Likelihood

We are already training BDT’s anyways to perform the CWola-style cuts.
Neyman-Pearson tells us we learn the likelihood ratio out of this!

2(x) (1 —p) (1 —2(x)) _ psig(®)
(1l —z(z)) PBkg()

l(x) =

Technical detail: Both the classifier score z and the signal fraction y are imperfect
estimators, so the weights might go negative! But we can just cut those out — we
were cutting things in the original analysis anyways! Reduces optimality, but not correctness!
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[ Asid e] . “Why bother with all this weighting stuff? If | have the
) likelihood ratio per-event, isn’t that already the most
powerful hypothesis test?”

It is true that the full information we have access to

\‘ o
is the set of all per-event likelihoods [Me over the course of my first AD ] A
project, confused why we do cuts 4 |
N and not just the full likelihood] - (,,‘ y/‘
L(X\; N, z;) = logPois(IN; \) + Z log(¢(x))
7
And that this leads to a powertul test statistic. Toy model: Gaussian Likelihoods

w(z) = exp(2(1 + d)z)
[ ! [ ! | I !
CB= 50

1l 1 B=1500
k B =500.0
| B = 5000.0

But it isn't the most stable — if L is even slightly off,
the entire distribution of the test statistic under
the null hypothesis is ruined. Extremely hard to
calibrate!

But the sum of weights is more robust! L

q q

| | | | 1
2 1 6 8 10

X Test Statistic Distribution .
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Likelihood-based Reweighting

3. Why is this OK to do?

Robustness and sanity checks
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[Cowan, Cranmer, Gross, Vitells; 1007.1727

Distribution of the Test Statistic

It is already known that under the null hypothesis, in the asymptotic limit, the
distribution of the test statistic of a Poissonian counting process follows a (half)-chi?

distribution [wilkes s wald]

Weights are not expected to change
this! They only change the effective
Gaussian moments, but this is OK!™

Pictured: Distribution of the test
statistic under the null hypothesis
(Same-Sign data), with
pseudoexperiments generated via NF

Upshot: it works!

(%) X2

[ 1]

100 3
] SPD Test Statistic

1072 5

1073 5

T T T T T
0 2 4 6 8 10 12
Test statistic qop

"Up to potential small third-moment effects
"What about small N? Ask me offline!
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Objection 1: BDT’s are Fallible

A real-life BDT does not learn the likelihood ratio. Even a BDT between two identical
datasets will not learn a likelihood ratio of 1, it will be 1 + noise.

But this is OK! Any weights work, and produce the same test statistic distribution
under the null. You may not have the most powerful weights anymore, but you will not

get an incorrect result.
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Example: Gaussian Signalon a
Gaussian background

Constructed such that the
true likelihood ratio is exp(x)

But mismodeling does not
significantly change the
distribution of the test
statistic!”
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“At low significance values
“Extremely high variance can begin to ruin things
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[c.f. Prasanth’s Talk!]

Objection 2: Looking at Data?

We look at the data to determine the weights via training. Technically, this training
procedure should be part of the full hypothesis likelihood.

However, this is not an issue with our method, but rather all CWolLa-style AD. As in
CATHODE, we assume that the training “factorizes” and we do not have a strong
signal-fraction dependence.

The only place the signal fraction enters is through (a) the distribution of weights and
(b) the definition of the weight function, both of which have small dependence

For p<<1:

Toy model: Fit a basic “logistic classifier” L = exp(Ax) on
data. For a signal fraction of exactly O, will learn A = 0.
For any positive signal fraction, will learn A = 1 in the
infinite-statistics limit.

But we already know (previous slide) that changing A is
robust!

\
mal; /1

2_1
aam ¥ pez" si

(V] (]

(w) =e

Y 2
<w2> =V 4 2ue2)‘ sinl

(And similar for all higher moments)

/\Two Gaussians model
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Conclusion
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Same-Sign Validation

vents

-

E

10°

104

103

10°

10!

10° e
1071 s

1021

2016 CMS Open Data DoubleMuon

T
Same Sign
8.7 fb~?

Vs =13 TeV
Anti-Isolated

1.1

25)

Y15
Y{(2¢
Y35

Fallso Positil\'e Rate
3 100%. 0.530
1 10.0%, 0.79c
1.0%. 1.250
3 0.1%. 1.160

P | |

6 8

10

12 14 16
Dimuon Mass my,, [GeV]

[
—_
=
|
-

10-2

[
—_
~
|

w

Background-Only p-Value

1074

2016 CMS Open Data DoubleMuon

T

LRI |

MLT._TraMsls DoublefraMss@iorsitaraiaht

Same Sign Muons
Bin width = 1.5%
Fit Type: Quintic
Muon Iso 04 = (.55

sl

I

Random Cut

Dimuon pyr &
Softer Mu IP3D 3
Harder Mu 1P3D ]

CATHODE

E S o 1 o 2 Th\’
BT v =13TeV f-Reweighting
A lllllll A L Illllll A lllllll L A AL LALL
1073 1072 1071 10°

False Positive Rate

Z
20

Rikab Gambhir - AD4HEP - 18 June 2025



