

Real-time Anomaly Detection on Liquid Argon Time Projection Chamber Wire Data

Seokju Chung, Jack Cleeve, Columbia University

June 18, 2025 AD4HEP Workshop

Introduction

- Real-Time Anomaly Detection: NSF-funded collaborative project between
 Columbia and Princeton Universities
 - Columbia (Neutrino) G. Karagiorgi (PI), S. Chung, J. Cleeve, A. Malige (Now at BNL)
 - Princeton (Collider) I. Ojalvo (PI), L. Gerlach, A. Ji, A. Pol (Now at Thomson Reuters Lab)
- Apply CMS <u>CICADA</u> network for anomaly detection in LArTPC raw data
 - Chung, et al., "Neural Network with Knowledge Distillation for Anomaly Detection in Liquid Argon Time Projection Chambers", *in preparation, to be submitted to JINST*
- Fast Inference for Rare Events based on Features in Liquid-argon ionization imagerY (FIREFLY)

Why Real-time Triggering?

- Modern particle experiments generate large amount of data
- Impossible to save all; store in temporary buffer
- Need selection (trigger) which decides whether to keep buffer data or not

Why Trigger on Anomalies? - Data-driven Trigger

- Experiments utilize different triggers for different physics signals of interest
 - Short Baseline Neutrino (SBN) Program
 - Neutrinos from beam External beam + coincidence light trigger
 - Supernova neutrinos External SNEWS trigger from telescopes, delay ~ minutes
- Larger experiments (e.g. DUNE) will be generating much larger data rates
- Cannot afford buffering the data for long, requiring them to have a data-driven trigger

Why Trigger on Anomalies? - Anomaly Trigger

- Trigger needs to be designed based on expected particle signature
 could be model dependent, signature for new physics is unknown
- Model-independent; learning from data
- Anomaly trigger already being used in some CMS triggers

https://github.com/AdrianAlan/L1CaloTriggerAD https://cds.cern.ch/record/2879816?In=en During this workshop:

- CMS AXOL1TL Trigger, Melissa Quinnan
- CMS CICADA Trigger, Kiley Kennedy

Detecting Anomalies

- Utilize Autoencoder, learns common features in data through unsupervised learning
- New Physics: rare, model independent
- "Anomalous" events will have a larger difference between input and output
- Difference quantified as **Anomaly Score**

Triggering on Anomalies

- Neural networks are effective; but, typically, their performance comes with a large computational resource consumption
- Using **Knowledge Distillation**, we project the performance of a (large, resource-intensive) Teacher Autoencoder to smaller **Student** quantized network

Adrian Alan Pol, Ekaterina Govorkova, Sonja Gronroos, Nadezda Chernyavskaya, Philip Harris et al. Knowledge Distillation for Anomaly Detection. Oct 9, 2023.

Deploying on Hardware

- Input image processing rate needs to be faster than (generated) image streaming rate
- Require hardware acceleration
 - → use Field Programmable Gate Array (FPGA)
- Trained Student is converted using hls4ml
- Resource consumption benchmarking in progress

Liquid Argon Time Projection Chambers (LArTPCs)

- Widely used technology for neutrino physics (ArgoNeuT, MicroBooNE, SBND, ICARUS, DUNE, etc.)
- Neutrino interacts with Ar nuclei, creating charged particles
- Charged particles create ionization electrons, which are drifted in a large electric field and sensed by wire sensor arrays

COLUMBIA UNIVERSITY

- <u>MicroBooNE open samples</u>: Simulated neutrino images overlaid on real cosmic images
- Data is labeled as neutrino or cosmic, but labels are not used in Teacher training
- To keep the Teacher computationally manageable, the input image was:

- To keep the Teacher computationally manageable, the input image was:
 - Originally 3456 × 6400 (Wires × Time)

- To keep the Teacher computationally manageable, the input image was:
 - Originally 3456 × 6400 (Wires × Time)
 - Compressed by a factor of 10 in the time axis

COLUMBIA UNIVERSITY

- To keep the Teacher computationally manageable, the input image was:
 - Originally 3456 × 6400 (Wires × Time)
 - Compressed by a factor of 10 in the time axis
 - Split into smaller images with four different sizes:
 - 864 × 64
 - 64 × 32
 - 18 × 16

- "Pixel Intensity" values were processed with:
 - Saturation at 100
 - Cutoff at 10
- Example processed image (864 × 64)

Teacher, Plane 2 run7014, subrun1209, event60457

S.Chung / AD4HEP Workshop / June 18th, 2025

Triggering on Anomalies

- Size reduction by factor of ~75 (250 MB → 3.4 MB)
- Teacher and Student Anomaly Scores are correlated

						864X64 N	etwork Knowledge Distillation		
Model: "teacher"						1000			
Layer (type)	Output Shape	Param #							
teacher_inputs_ (InputLaye r)	[(None, 864, 64, 1)]	0	Model: "v1_16X12"			800-			
teacher_reshape (Reshape)	(None, 864, 64, 1)	0	Layer (type)	Output Shape	Param #	000			
teacher_conv2d_1 (Conv2D)	(None, 864, 64, 20)	200	<pre>inputs_ (InputLayer)</pre>	[(None, 55296)]	0	core			
teacher_relu_1 (Activation	(None, 864, 64, 20)	0	dense1 (QDenseBatchnorm)	(None, 16)	884817	ഗ് <u>≻</u> 600-			
			relu1 (QActivation)	(None, 16)	0	ma			
teacher_pool_1 (AveragePoo ling2D)	(None, 432, 32, 20)	0	dropout_1 (Dropout)	(None, 16)	0	t Anc			
teacher_conv2d_2 (Conv2D)	(None, 432, 32, 30)	5430	dense2 (QDense)	(None, 1)	16	ue 400-			
teacher_relu_2 (Activation)	(None, 432, 32, 30)	0	outputs (QActivation)	(None, 1)	0	Stu			
teacher_flatten (Flatten)	(None, 414720)	0	Total params: 884833 (3.38	MB)		200		Preliminary	
teacher_latent (Dense)	(None, 80)	33177680	Non-trainable params: 884800 (1 Non-trainable params: 33 (1	136.00 Byte)				-	
 Total params: 66789361 (254 Trainable params: 66789361 (Non-trainable params: 0 (0.6	.78 MB) (254.78 MB) 00 Byte)				Student	00	2000 400	0 6000 8000 10000 12000 140	000

Teacher

S.Chung / AD4HEP Workshop / June 18th, 2025

Understanding Model Performance - Anomalous Events

- The Teacher Autoencoder provides a visual representation of the differences between input and output images
- We analyzed individual Teacher outputs with high anomaly scores to identify features of anomalous images
- As shown in Figure, inputs with multiple tracks are not reproduced correctly, indicating anomalous behavior

NEVIS LABORATORIES Columbia University

Understanding Model Performance - Anomalous Events

• This behavior is qualitatively explainable

COLUMBIA UNIVERSITY

- The Teacher identifies common features in the input
- Most input images are either empty or have a single long track
- Therefore, images with multiple tracks will produce a higher anomaly score

Correlation - 864X64

Table 2. ROC-AUC values for different anomaly scores with input size 864×64 . The signal in each entry was defined as having exactly *n* tracks.

n Tracks	Teacher	Normalized Teacher	Student	Normalized Student
1	0.9676	0.9629	0.8595	0.8584
2	0.9660	0.9720	0.8777	0.8778
3	0.9714	0.9779	0.9341	0.9335
4	0.9752	0.9807	0.9521	0.9515
5	0.9810	0.9854	0.9585	0.9572
6	0.9943	0.9863	0.9951	0.9901
7	0.9855	0.9938	0.9835	0.9795

Model Performance - 864X64

Table 2. ROC-AUC values for different anomaly scores with input size 864×64 . The signal in each entry was defined as having exactly *n* tracks.

n Tracks	Teacher	Normalized Teacher	Student	Normalized Student
1	0.9676	0.9629	0.8595	0.8584
2	0.9660	0.9720	0.8777	0.8778
3	0.9714	0.9779	0.9341	0.9335
4	0.9752	0.9807	0.9521	0.9515
5	0.9810	0.9854	0.9585	0.9572
6	0.9943	0.9863	0.9951	0.9901
7	0.9855	0.9938	0.9835	0.9795

HLS-converted Student Performance

 Anomaly score comparison between original (python) and hls-converted (c) model

HLS-converted Student Performance

- Resource consumption estimates of middle and small Student network
- Both are over-utilizing available resources, work in process in reducing network size while maintaining performance

Name	BRAM_18K	DSP	FF	LUT	URAM
DSP	-	-	-	-	-
Expression	-	-	0	6	-
FIFO	-	-		-	-
Instance	0	26872	786957	2202910	0
Memory	-	-	-	-	-
Multiplexer	-	-		54	-
Register	-	-	131767	-	-
Total	0	26872	918724	2202970	0
Available	5376	12288	3456000	1728000	1280
Available SLR	1344	3072	864000	432000	320
Utilization (%)	0	218	26	127	0
Utilization SLR (%)	0	874	106	509	0

Name	BRAM_18K	DSP	FF	LUT	URAM
DSP	-	-	-	-	-
Expression	-	-	0	6	-
FIFO	-	-	-	-	
Instance	0	5329	127014	305312	0
Memory	-	-	-	-	-
Multiplexer	-	-	-	54	-
Register	-	-	19129	-	-
Total	0	5329	146143	305372	0
Available	5376	12288	3456000	1728000	1280
Available SLR	1344	3072	864000	432000	320
Utilization (%)	0	43	4	17	0
Utilization SLR (%)	0	173	16	70	0

middle-sized student

small-sized student

Conclusion and Outlook

- Autoencoders enable anomaly detection without prior knowledge or specific models
- Knowledge Distillation allows compression of computationally expensive Teacher model into more efficient Student model for hardware deployment
- Model successfully detects anomalies, particularly in multi-track events in LArTPC data
- Approach is scalable and applicable to LArTPC-based neutrino experiments
- Plan to apply same network for detector monitoring

This work was supported by the National Science Foundation under Grant No. OAC-2209917.

We acknowledge the MicroBooNE Collaboration for making publicly available the data sets [<u>10.5281/zenodo.7262009</u>] employed in this work. These data sets consist of simulated neutrino interactions from the Booster Neutrino Beamline overlaid on top of cosmic data collected with the MicroBooNE detector [2017 JINST 12 P02017].

Network Structure

class TeacherAutoencoder: def init (self, input shape: tuple): self.input shape = input shape def get model(self): inputs = Input(shape=self.input_shape, name="teacher_inputs_") x = Reshape((864, 64, 1), name="teacher_reshape")(inputs) x = Conv2D(20, (3, 3), strides=1, padding="same", name="teacher_conv2d_1")(x) x = Activation("relu", name="teacher_relu_1")(x) x = AveragePooling2D((2, 2), name="teacher_pool_1")(x) x = Conv2D(30, (3, 3), strides=1, padding="same", name="teacher conv2d 2")(x) x = Activation("relu", name="teacher relu 2")(x) x = Flatten(name="teacher flatten")(x) x = Dense(80, activation="relu", name="teacher latent")(x) x = Dense(432 * 32 * 30, name="teacher dense")(x) x = Reshape((432, 32, 30), name="teacher_reshape2")(x) x = Activation("relu", name="teacher_relu_3")(x) x = Conv2D(30, (3, 3), strides=1, padding="same", name="teacher_conv2d_3")(x) x = Activation("relu", name="teacher relu 4")(x) x = UpSampling2D((2, 2), name="teacher upsampling")(x) x = Conv2D(20, (3, 3), strides=1, padding="same", name="teacher conv2d 4")(x) x = Activation("relu", name="teacher relu 5")(x) outputs = Conv2D((3, 3),activation="relu", strides=1, padding="same", name="teacher_outputs",)(x) return Model(inputs, outputs, name="teacher")

class V1_16X16:

def __init__(self, input_shape: tuple):
 self.input_shape = input_shape

def get_model(self): inputs = Input(shape=self.input_shape, name="inputs_") x = QDenseBatchnorm(16, kernel_quantizer=quantized_bits(16, 4, 1, alpha=1.0), bias_quantizer=guantized_bits(8, 3, 1, alpha=1.0), name="dense1",)(inputs)

```
x = QActivation("quantized_relu(10, 6)", name="relu1")(x)
```

```
x = Dropout(1 / 8)(x)
```

```
x = QDense(
```

1,

kernel_quantizer=guantized_bits(12, 3, 1, alpha=1.0),

```
use_bias=False,
```

name="dense2",

```
)(x)
```

outputs = QActivation("quantized_relu(16, 8)", name="outputs")(x)
return Model(inputs, outputs, name="v1_16X16")

Input Data

local_plane=2

instance_label plot

semantic_label plot

Time Tick

Model Performance

 Track_n_i: [n_i <= numbers of particles < n_(i+1)] of the same type need to be inside the input image to be recognized as a single track

Track Definition

 Track_n_i: [n_i <= numbers of particles < n_(i+1)] of the same type need to be inside the input image to be recognized as a single track

Number of Tracks

- To verify the assumption, we used truth-level information from simulated neutrino data
- A set of criteria was applied to match visual tracks to the truth-level information
- Each interaction point is labeled with a Geant4 label, linking it to the particle causing the interaction
- To determine the number of tracks in the input image, we counted the different Geant4 label sets
- To distinguish track qualities, we divided track length by the number of particle interactions forming a single track
- Tracks criteria Track_ $\{n_x\}$: $n_{x-1} < number of interaction points < <math>n_{x}$ points

Correlation

- The anomaly score for an autoencoder is defined as the difference between input and output
- This anomaly score is proportional to the absolute amount of "ADC" in the input image
- To normalize the anomaly score, we divide it by the sum of "ADC" values in the input image

Correlation

- The different correlation plots between the normalized anomaly score and the number of tracks are shown
- Center dots represent the mean of the anomaly score distribution, and error bars indicate the standard deviation
- For the three different input image sizes, we observe a clear correlation between the normalized anomaly score and the number of tracks
 - 2592 mm X 512 mm, 192 mm X 256 mm, 96 mm X 72 mm
 (Full image is 10368 mm X 5120 mm)
- This indicates that our model is sensitive to multi-track inputs

