Recent Advances in Resonant Anomaly Detection

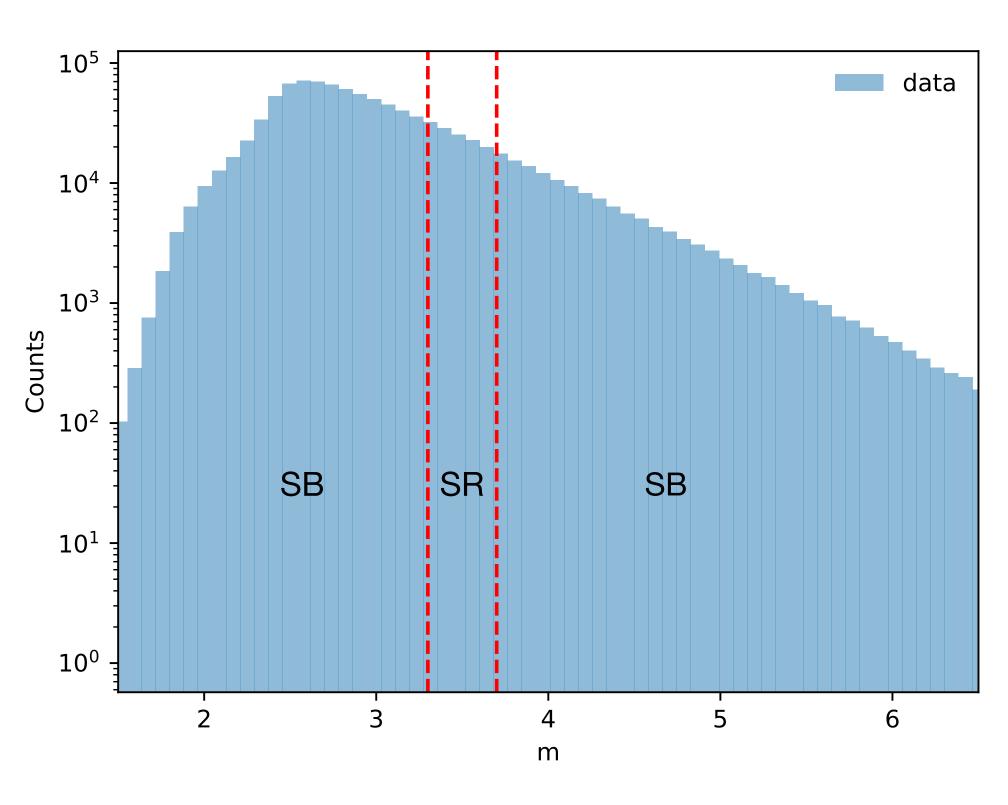
Ranit Das

Based on <u>arXiv:2410.20537</u> and <u>arXiv:2312.11629</u>

AD4HEP-2025

06-17-2025

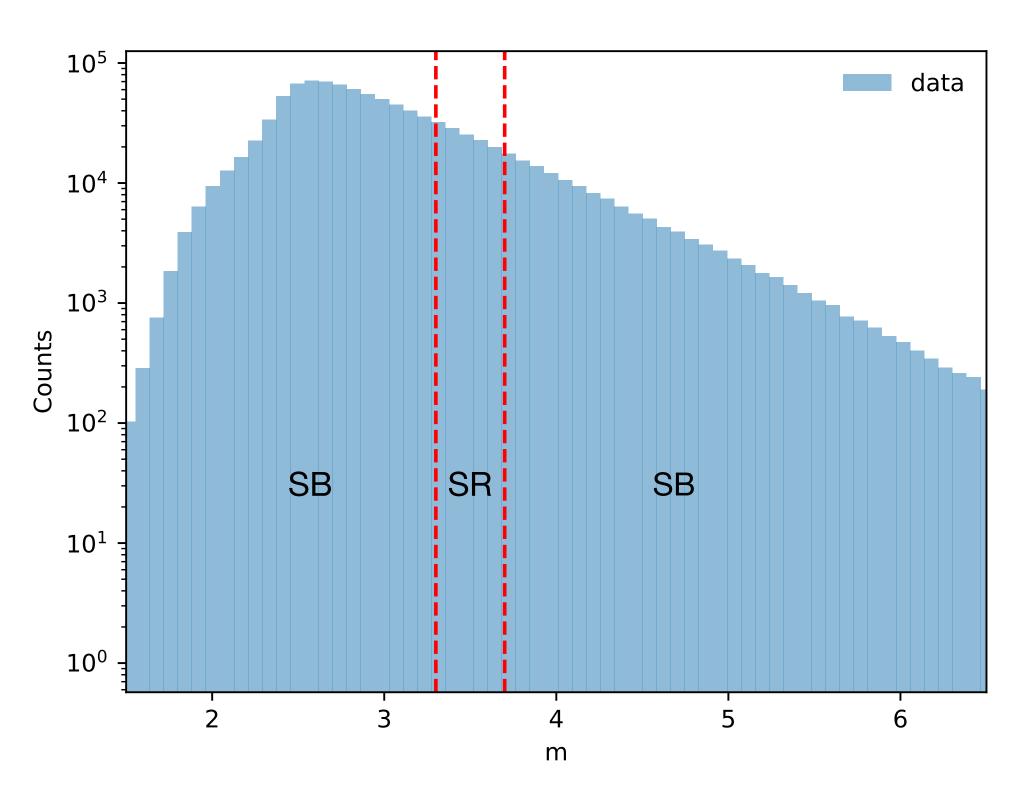
Key Steps:



ANODE: arXiv:2001.04990v2
CATHODE: arXiv:2109.00546v3
CURTAINS: arXiv:2203.09470v3

Key Steps:

• Define different Signal Regions(SR) and Side-Band Regions(SB) using a resonant feature *m*.

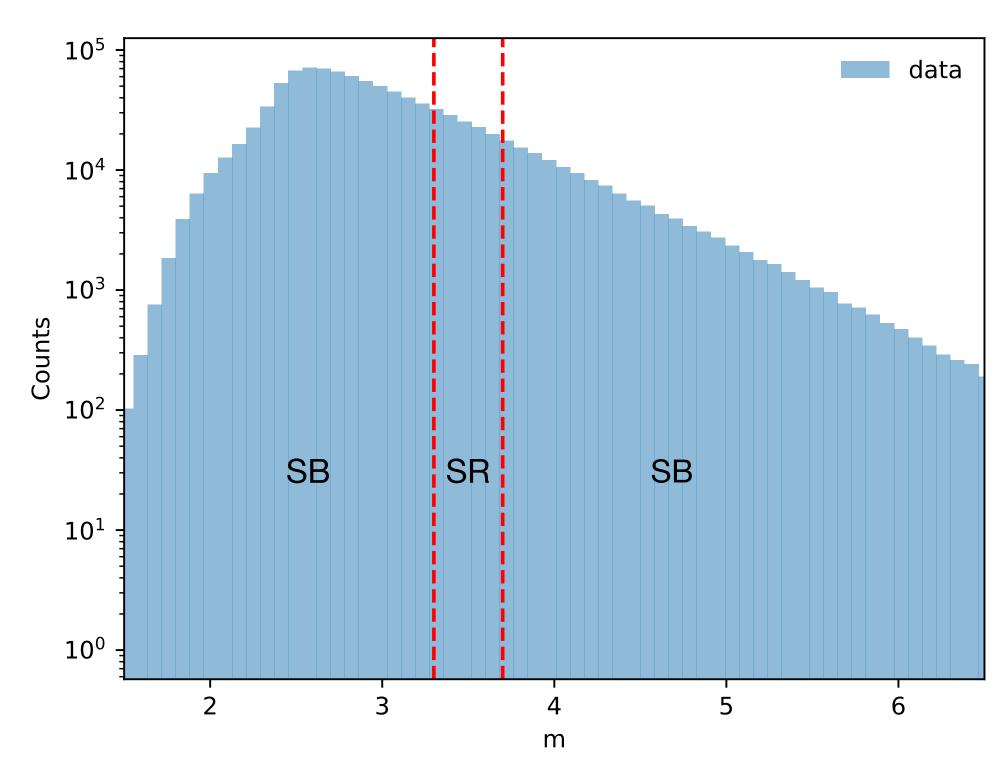


ANODE: arXiv:2001.04990v2
CATHODE: arXiv:2109.00546v3
CURTAINS: arXiv:2203.09470v3

Key Steps:

• Define different Signal Regions(SR) and Side-Band Regions(SB) using a resonant feature *m*.

• For each SR, generate a background template from SB and interpolated into SR.

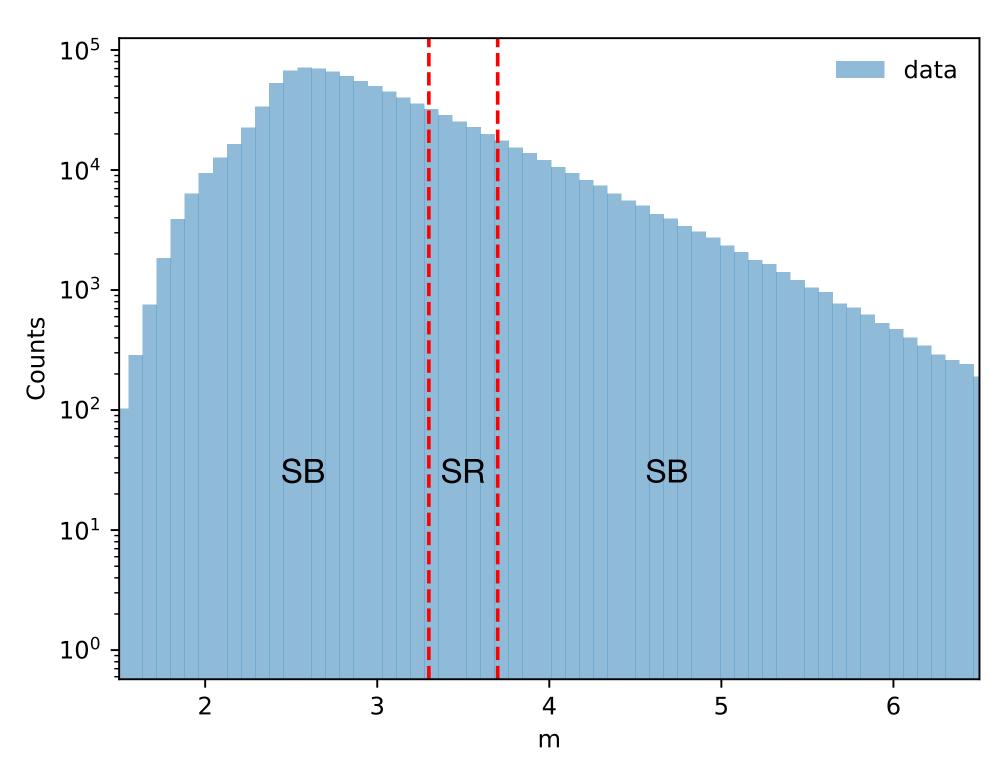


ANODE: <u>arXiv:2001.04990v</u>2 CATHODE: <u>arXiv:2109.00546v3</u> CURTAINS: <u>arXiv:2203.09470v3</u>

Key Steps:

• Define different Signal Regions(SR) and Side-Band Regions(SB) using a resonant feature *m*.

- For each SR, generate a background template from SB and interpolated into SR.
- Distinguish between data and background template using classifier (like CATHODE), or density estimators (like ANODE).



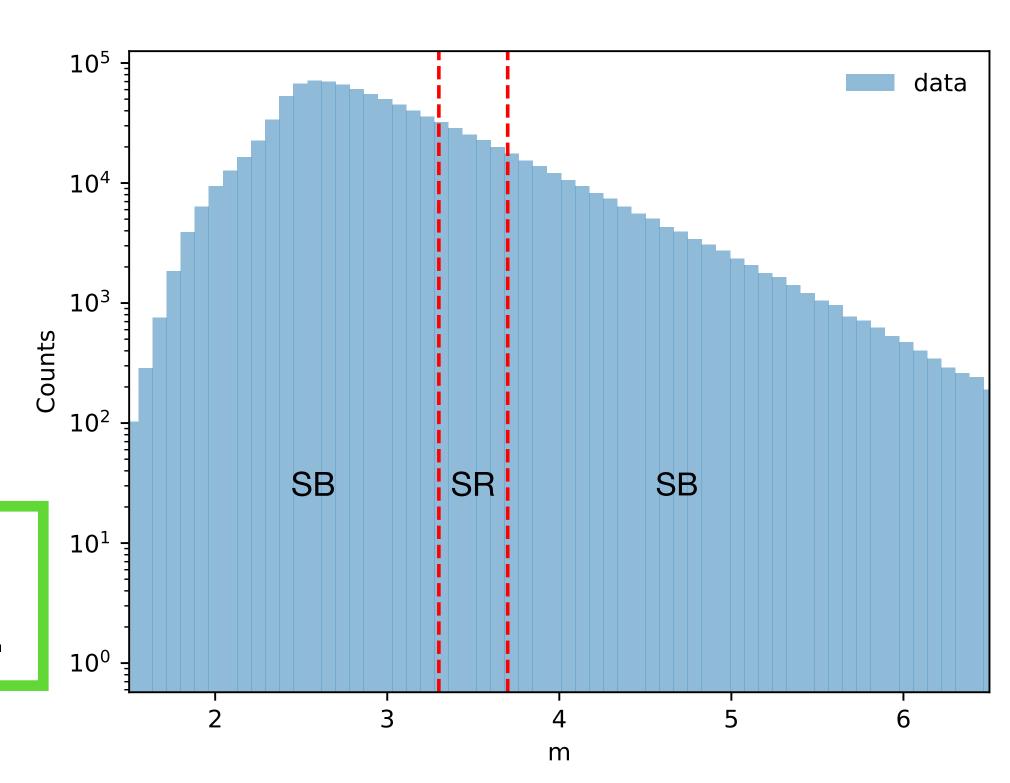
ANODE: <u>arXiv:2001.04990v</u>2 CATHODE: <u>arXiv:2109.00546v3</u> CURTAINS: <u>arXiv:2203.09470v3</u>

Key Steps:

• Define different Signal Regions(SR) and Side-Band Regions(SB) using a resonant feature *m*.

SIGMA (second half of my talk)

- For each SR, generate a background template from SB and interpolated into SR.
- Distinguish between data and background template using classifier (like CATHODE), or density estimators (like ANODE).



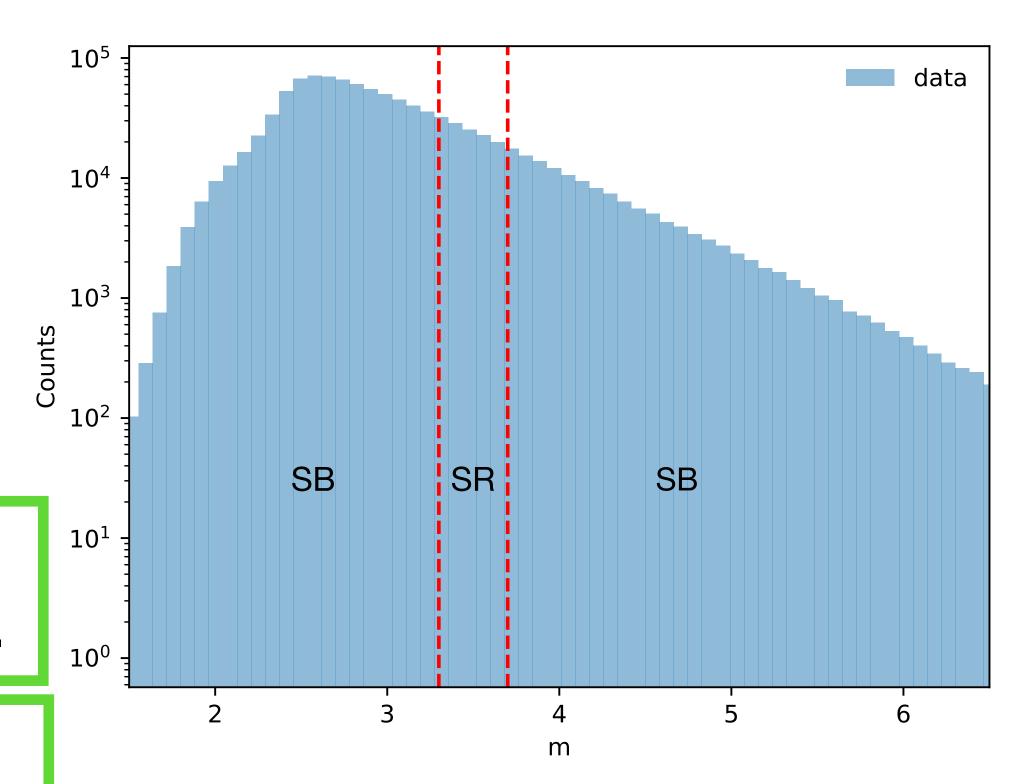
ANODE: arXiv:2001.04990v2
CATHODE: arXiv:2109.00546v3
CURTAINS: arXiv:2203.09470v3

Key Steps:

• Define different Signal Regions(SR) and Side-Band Regions(SB) using a resonant feature *m*.

SIGMA (second half of my talk)

- For each SR, generate a background template from SB and interpolated into SR.
- Distinguish between data and background template using classifier (like CATHODE), or density estimators (like ANODE).



ANODE: arXiv:2001.04990v2
CATHODE: arXiv:2109.00546v3
CURTAINS: arXiv:2203.09470v3

Given a background template, construct the NP classifier R(x):

$$R(x) = \frac{P_{data}(x)}{P_{B}(x)}$$

Given a background template, construct the NP classifier R(x):

Classifier based methods:

- CATHODE (arXiv:2109.00546v3)
- CWOLA (arXiv:1902.02634v2)
- CATHODE-BDT (arXiv:2309.13111)

..... etc

 $R(x) = \frac{P_{data}(x)}{P_{D}(x)}$

Classifier

Samples from background Template

VS

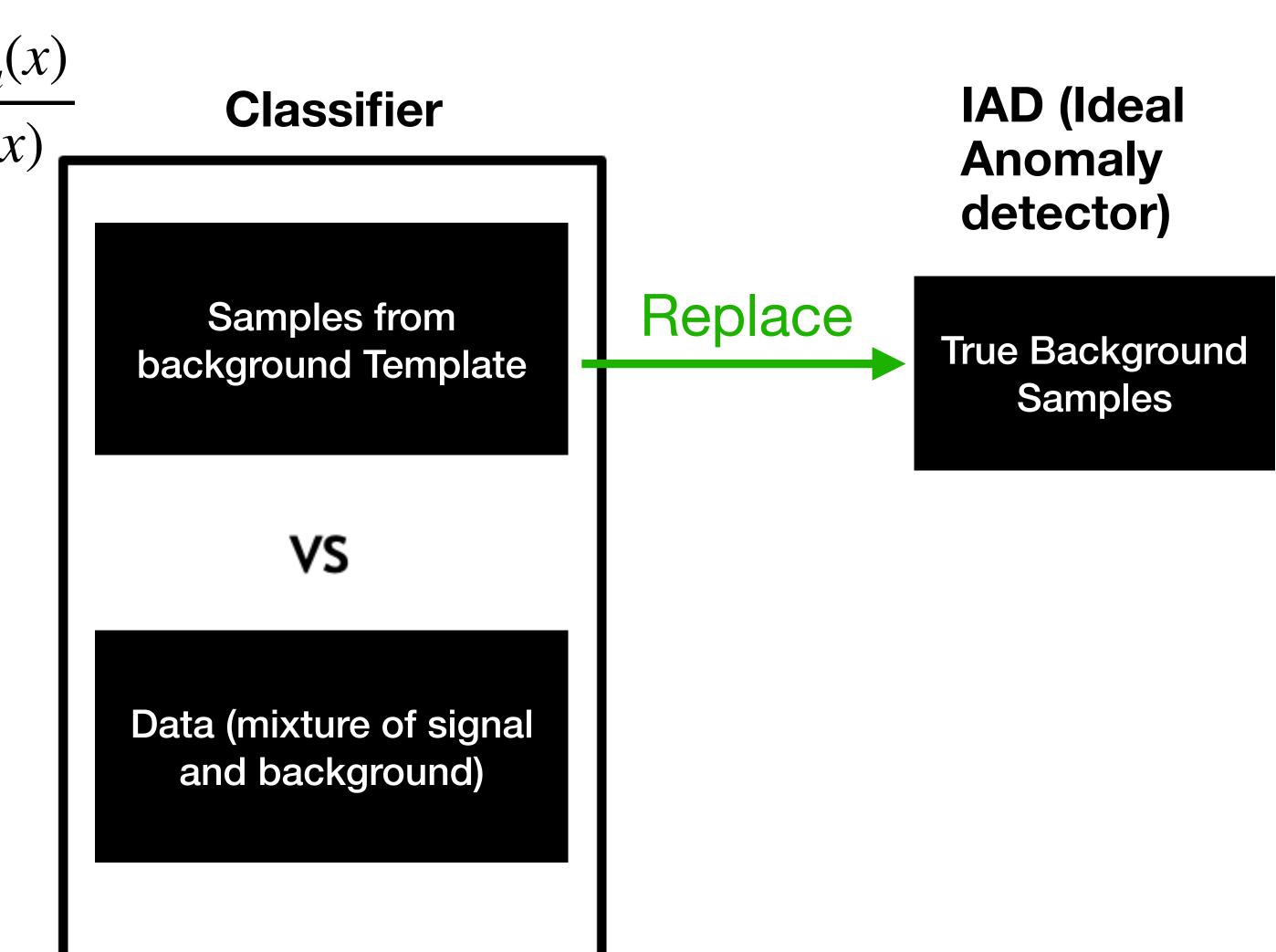
Data (mixture of signal and background)

Given a background template, construct the NP classifier R(x):

Classifier based methods:

- CATHODE (arXiv:2109.00546v3)
- CWOLA (arXiv:1902.02634v2)
- CATHODE-BDT (arXiv:2309.13111)

..... etc

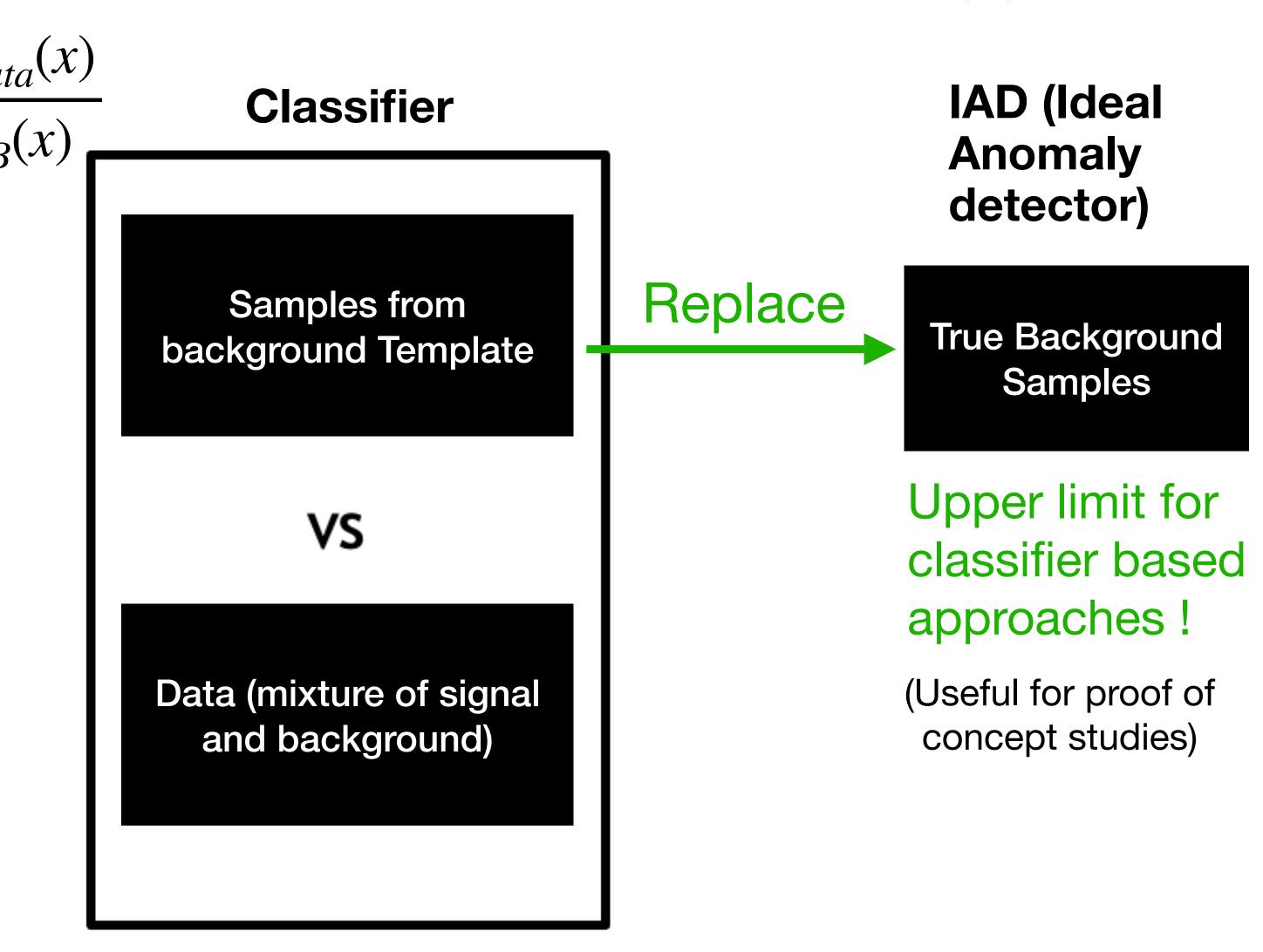


Given a background template, construct the NP classifier R(x):

Classifier based methods:

- CATHODE (arXiv:2109.00546v3)
- CWOLA (arXiv:1902.02634v2)
- CATHODE-BDT (arXiv:2309.13111)

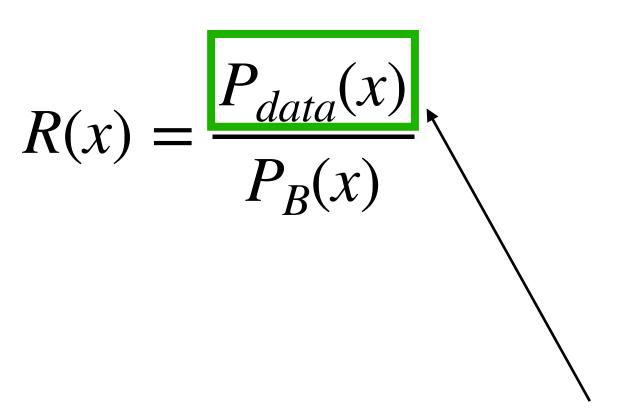
..... etc



Given a background template, construct the NP classifier R(x):

Density estimation based methods:

- ANODE (<u>arXiv:2001.04990v</u>2)
- R-ANODE (<u>arXiv:2312.11629</u>)



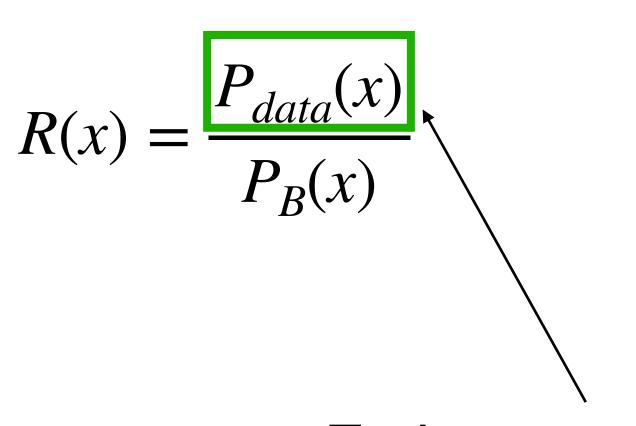
Estimate using a density estimator!

Given a background template, construct the NP classifier R(x):

Density estimation based methods:

- ANODE (<u>arXiv:2001.04990v</u>2)
- R-ANODE (<u>arXiv:2312.11629</u>)

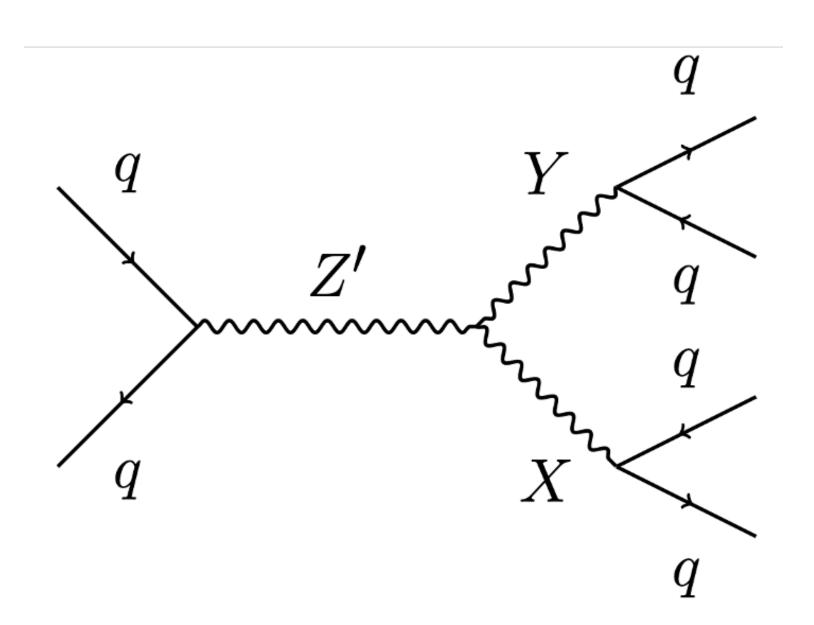
this talk!



Estimate using a density estimator!

Dataset: LHCO dataset

- Data: 1M QCD di-jet events as background and different amounts of signal events.
- The resonant variable is m_{JJ} , and the features x are $[m_{J_1},m_{J_2}-m_{J_1}, au_{21}^{J_1}, au_{21}^{J_2}]$
- The SR: $3.3TeV < m_{II} < 3.7TeV$.

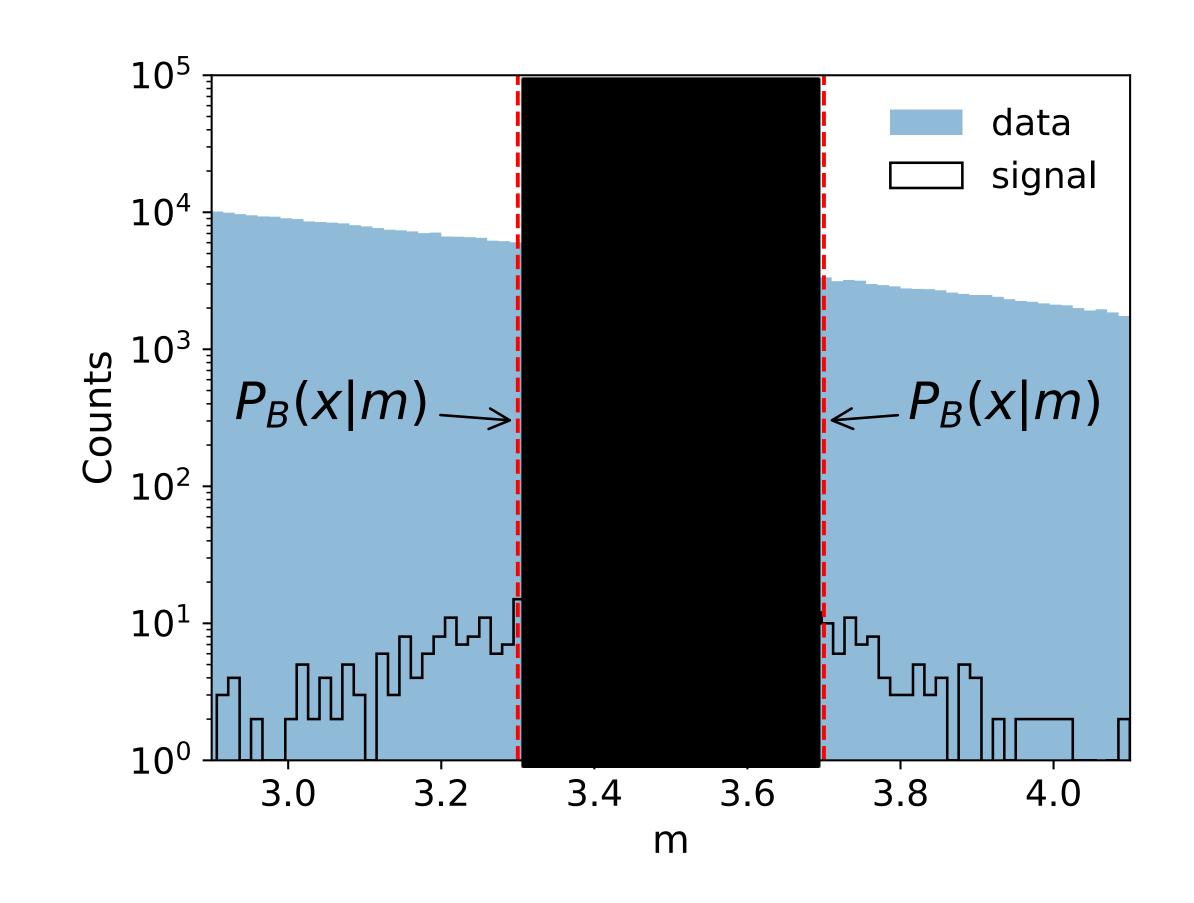


R-ANODE: Residual ANODE

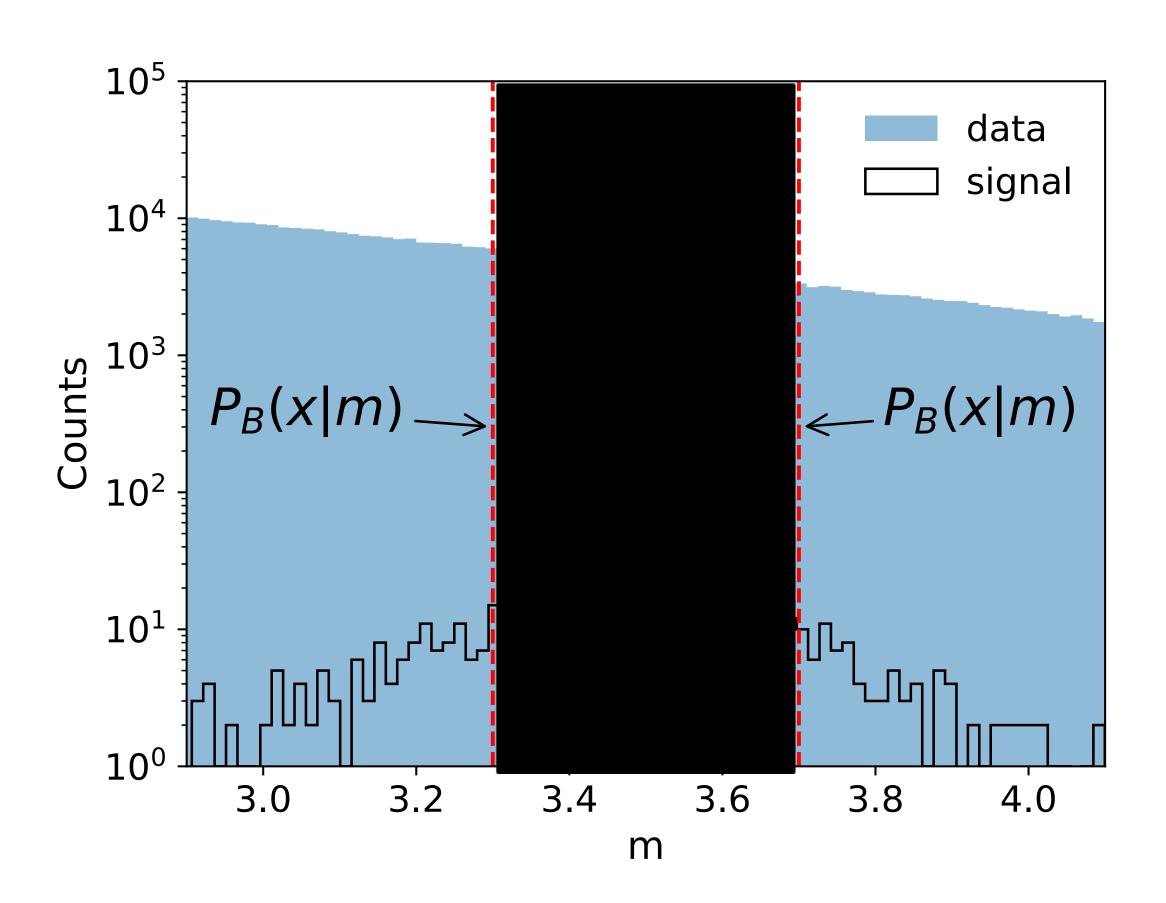
Based on <u>arXiv:2312.11629</u>

Ranit Das, Gregor Kasieczka, and David Shih

Generate background template in SR:

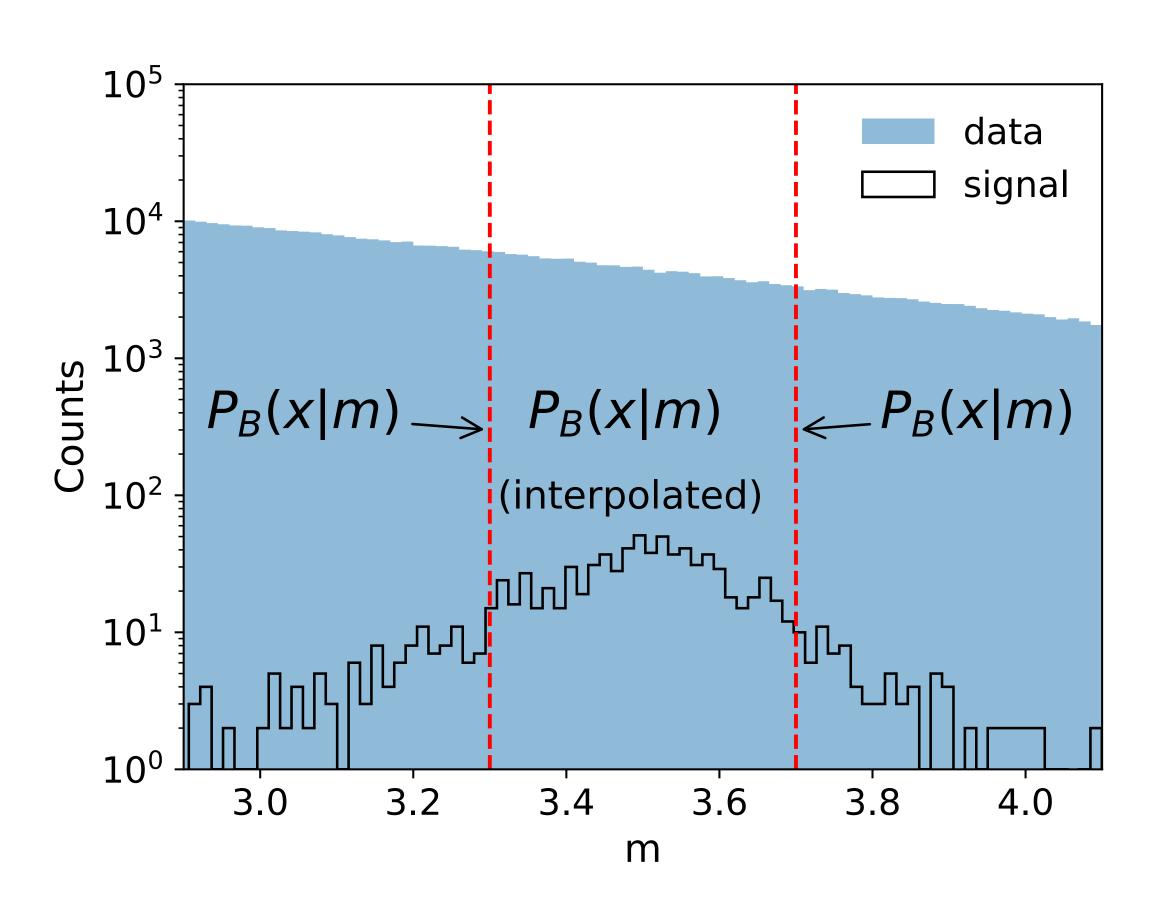


Generate background template in SR:



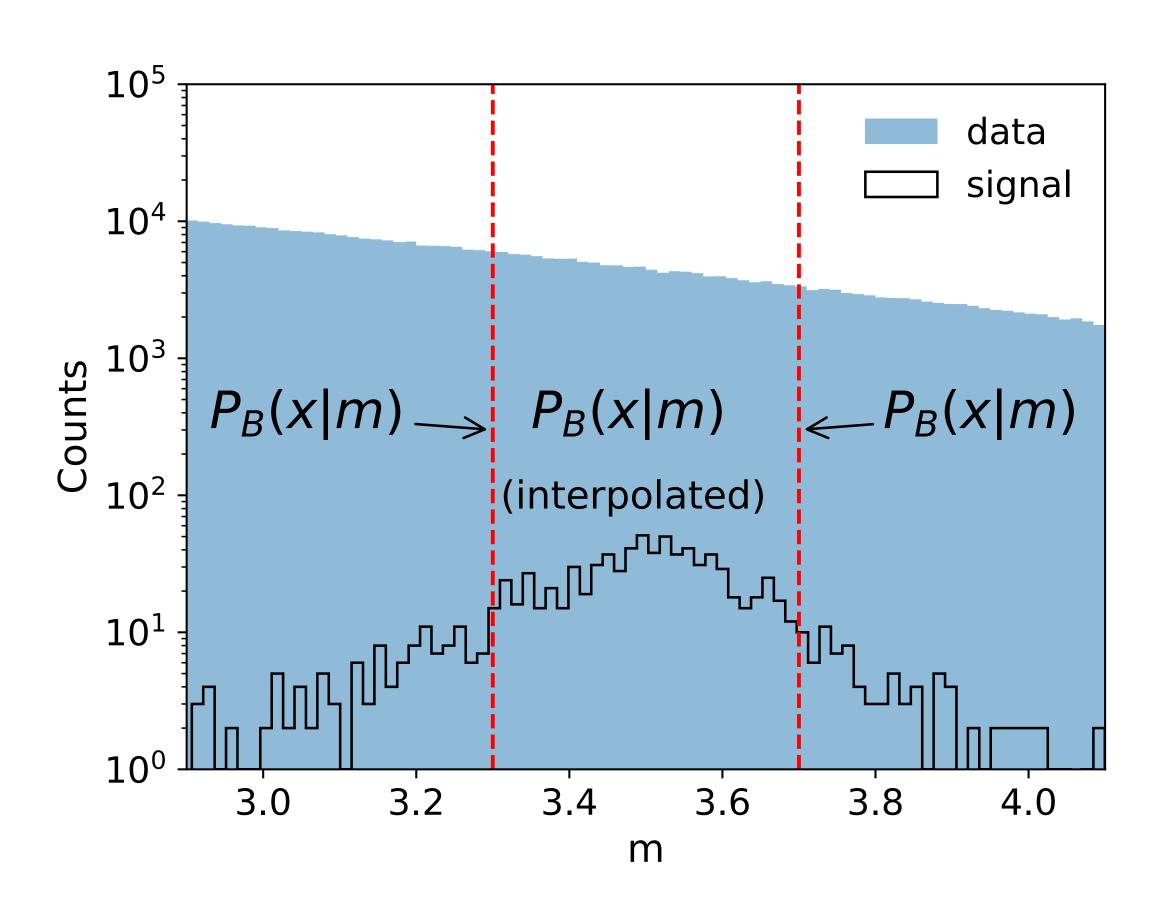
• A conditional density estimator is trained to learn $P_B(x \mid m \in SB)$ in the side-bands (SB).

Generate background template in SR:



• A conditional density estimator is trained to learn $P_B(x \mid m \in SB)$ in the side-bands (SB).

Generate background template in SR:



- A conditional density estimator is trained to learn $P_B(x \mid m \in SB)$ in the side-bands (SB).
- The learned $P_B(x \mid m)$ is used to interpolate into the SR.

In SR:

$$P_{data}(x, m) = w * P_S(x, m) + (1 - w) * P_B(x, m)$$

In SR:

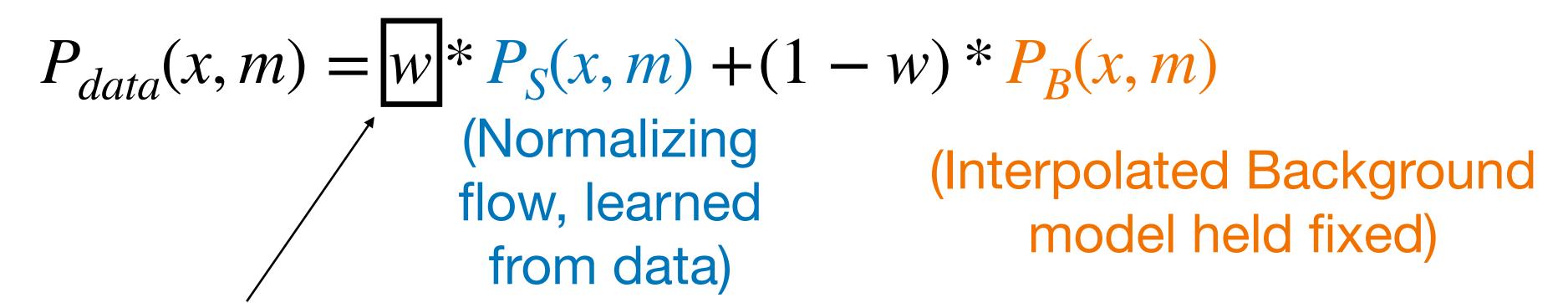
$$P_{data}(x, m) = w * P_S(x, m) + (1 - w) * P_B(x, m)$$

(Interpolated Background model held fixed)

In SR:

```
P_{data}(x,m) = w * P_S(x,m) + (1-w) * P_B(x,m) (Normalizing flow, learned from data) (Interpolated Background model held fixed)
```

In SR:



Learn the signal fraction w from data

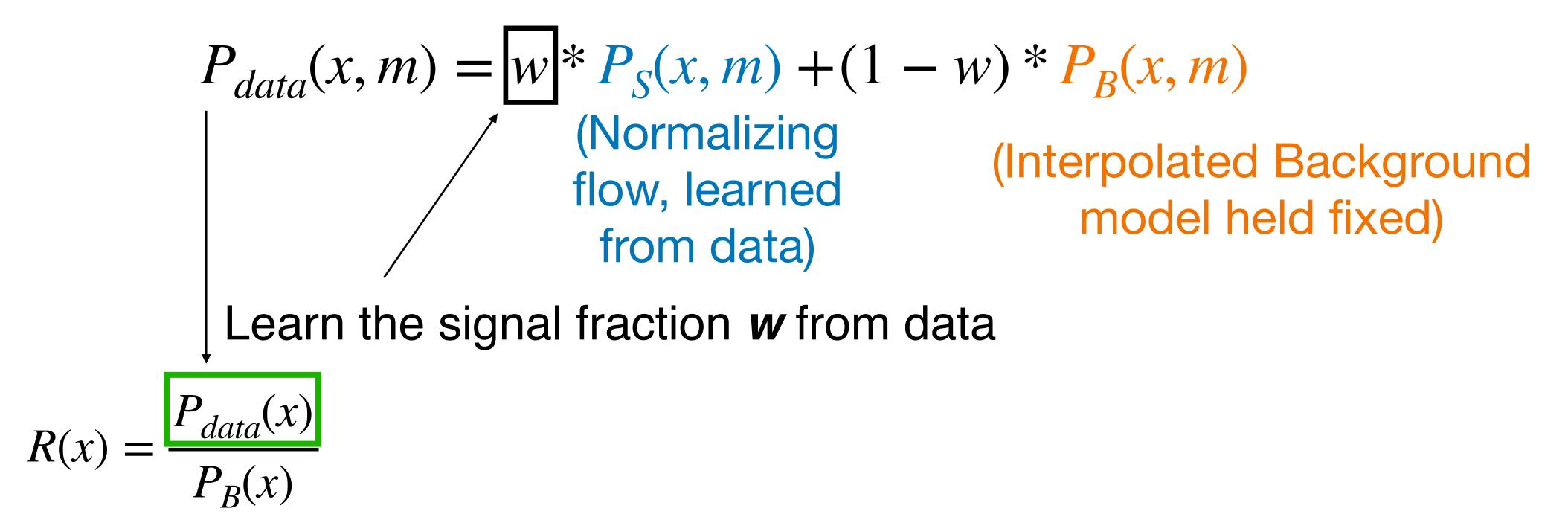
In SR:

$$P_{data}(x,m) = \boxed{w} * P_S(x,m) + (1-w) * P_B(x,m)$$
 (Normalizing flow, learned from data) (Interpolated Background model held fixed)

Learn the signal fraction w from data

R-ANODE (ideal): **w** fixed to the true **w**-value (useful for proof of concept studies)

In SR:



R-ANODE (ideal): w fixed to the true w-value (useful for proof of concept studies)

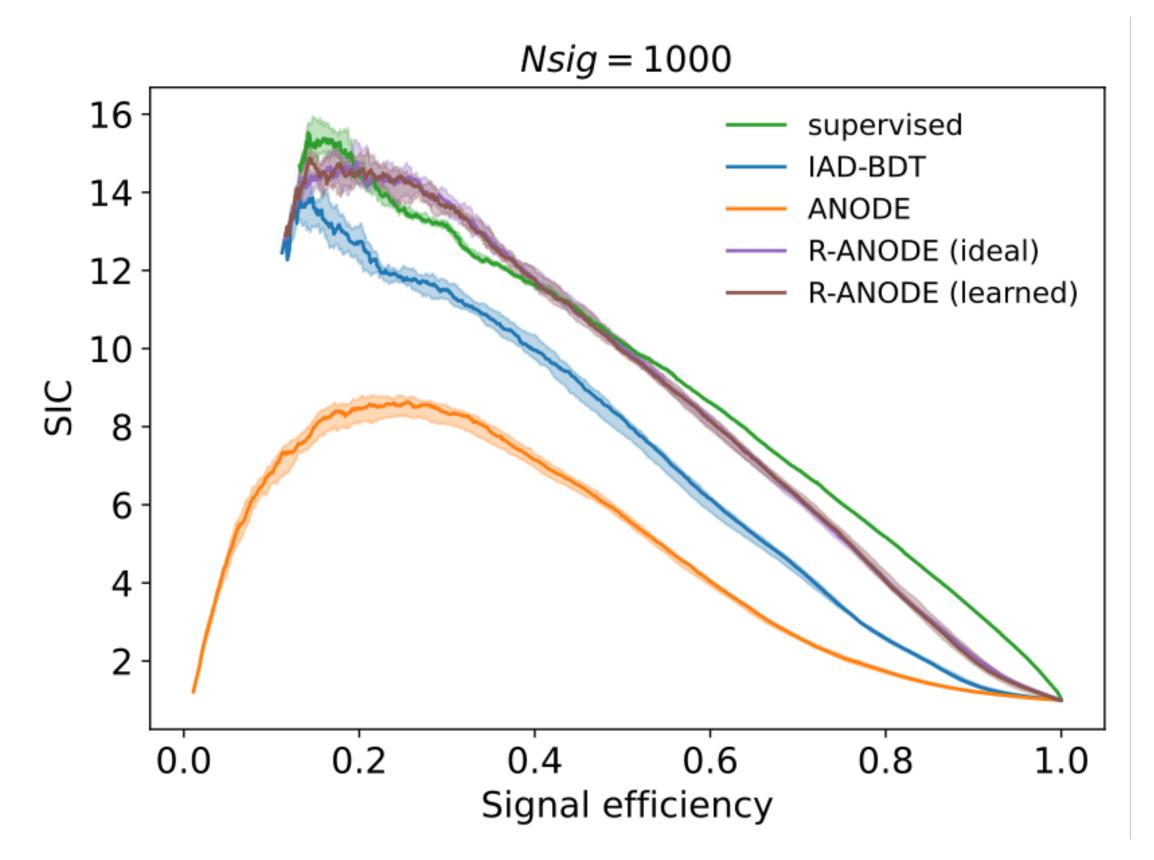
Loss:

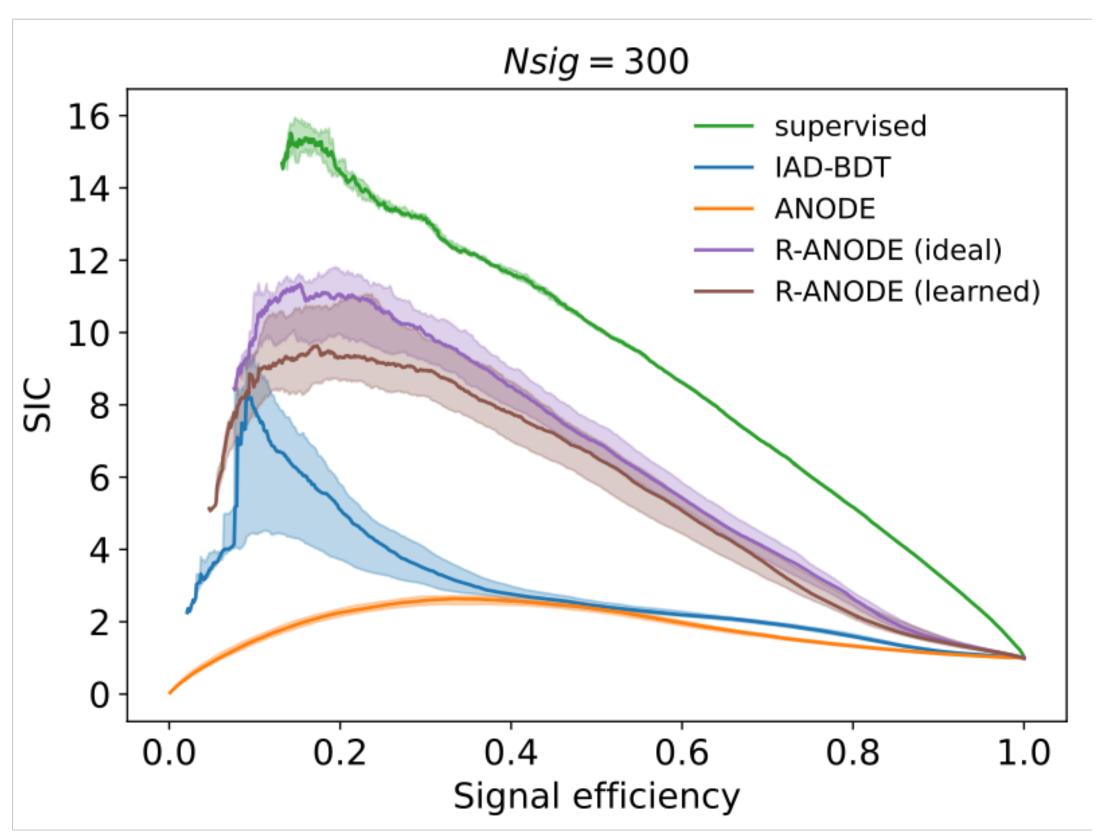
Minimize: $-\log(P_{data}(x, m))$

w.r.t parameters of $P_S(x, m)$ and w, while freezing the parameters of $P_B(x, m)$

SIC Curves

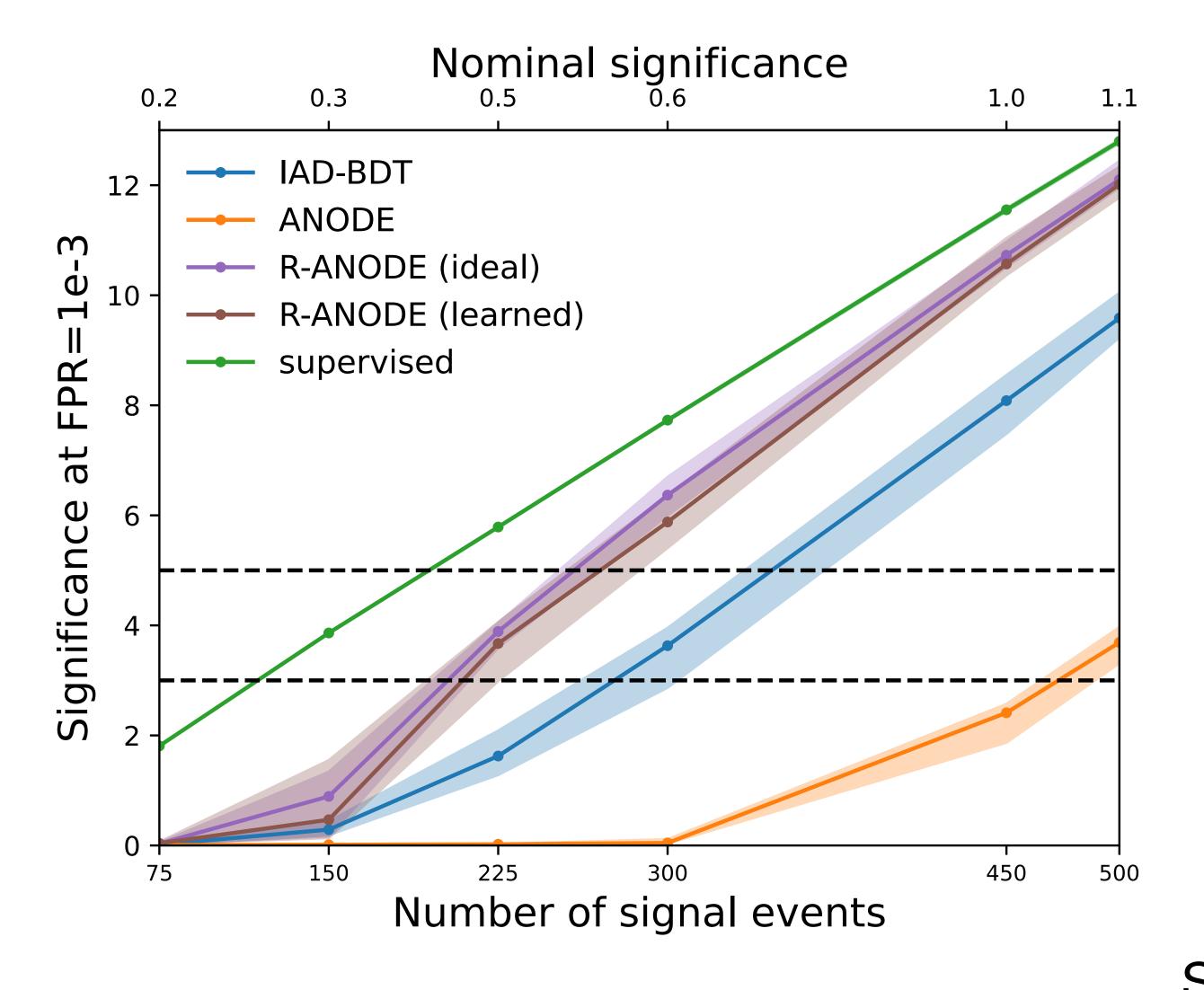
$SIC = TPR/\sqrt{FPR}$





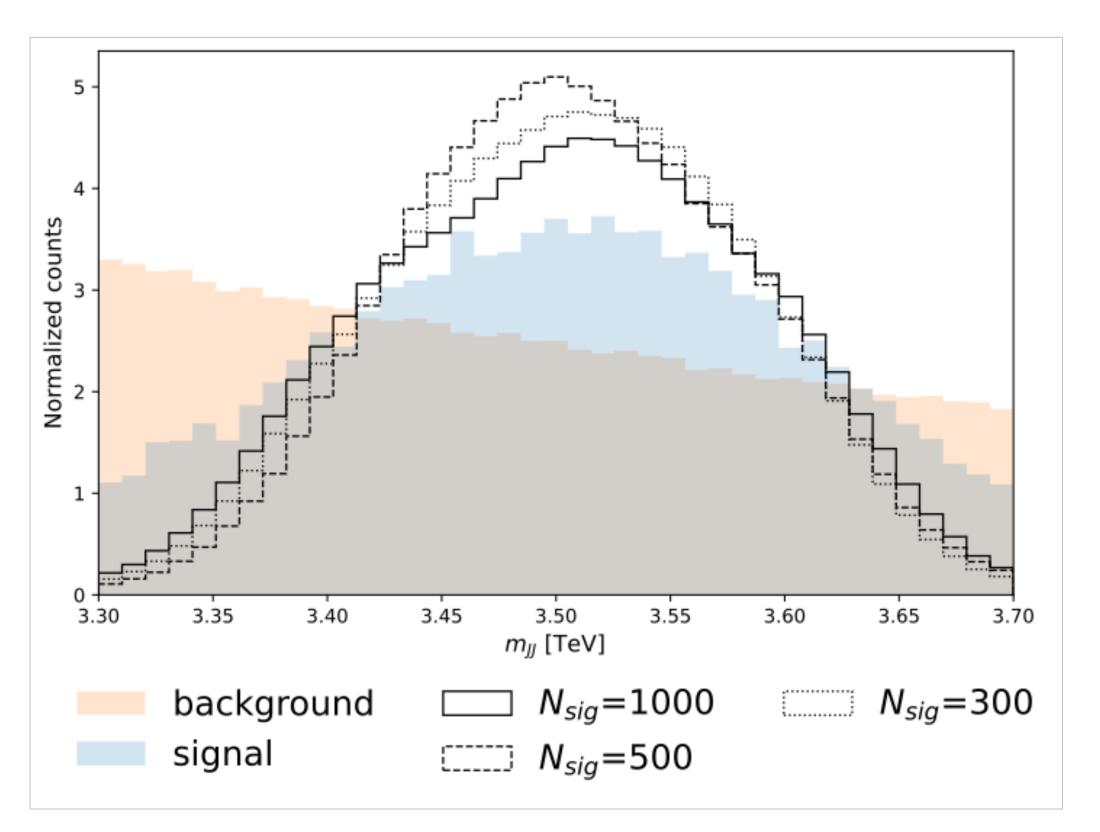
R-ANODE improves ANODE and also gives better SIC Curves than the idealized-AD (IAD) (classifier based approaches!)

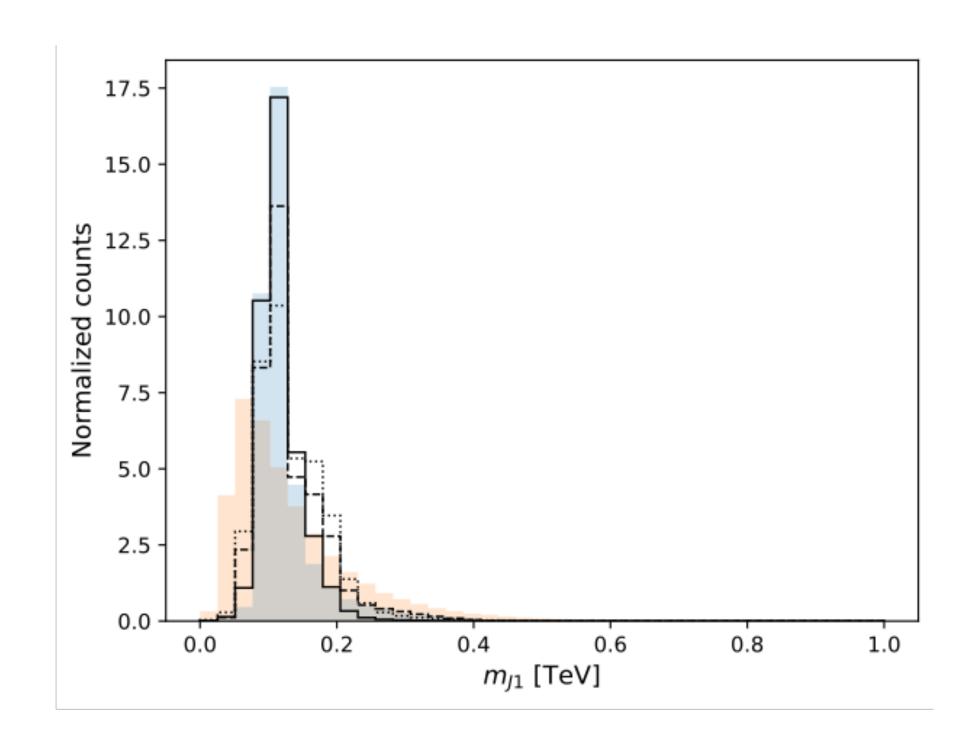
Nsig vs Significance



Significance =
$$SIC * \frac{S}{\sqrt{B}}$$

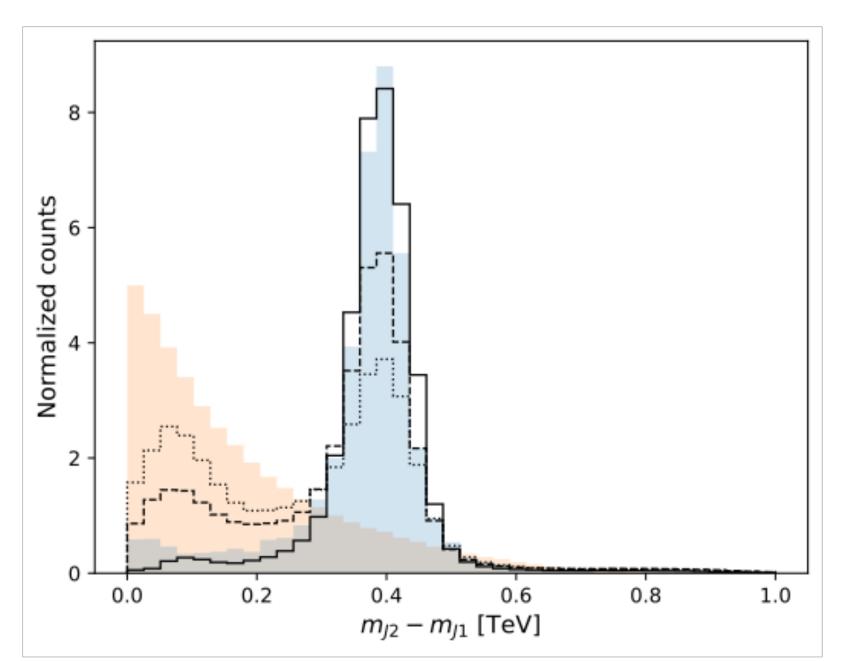
Samples from $P_S(x, m)$

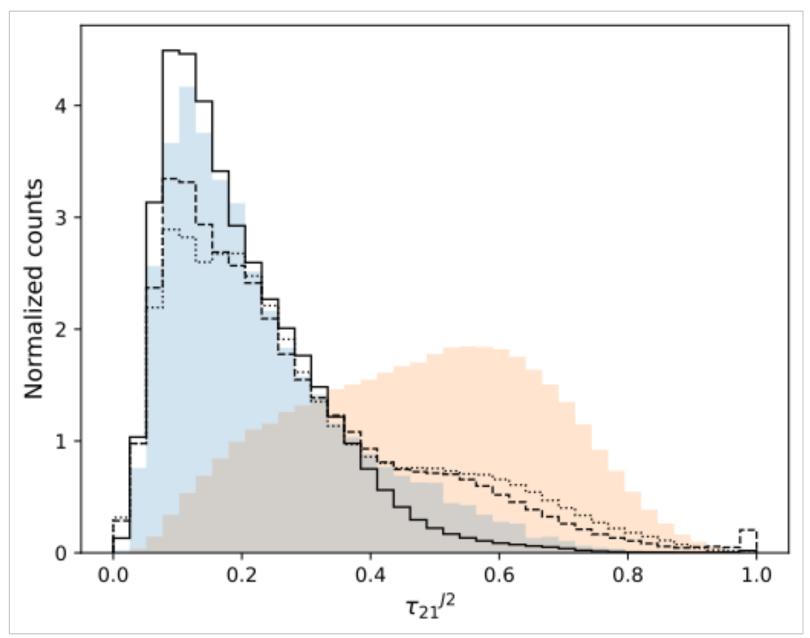


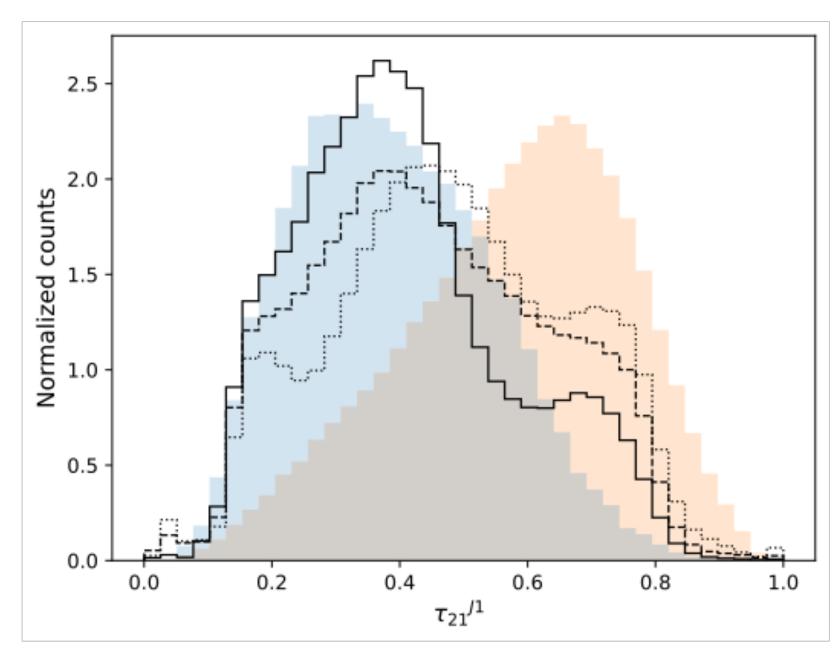


- Directly learning the signal distributions $P_S(x,m)$ leads to a more interpretable method.
- This could give us information about the signal: eg: mass of subjet, Pronginess of subjet.

Samples from $P_S(x, m)$

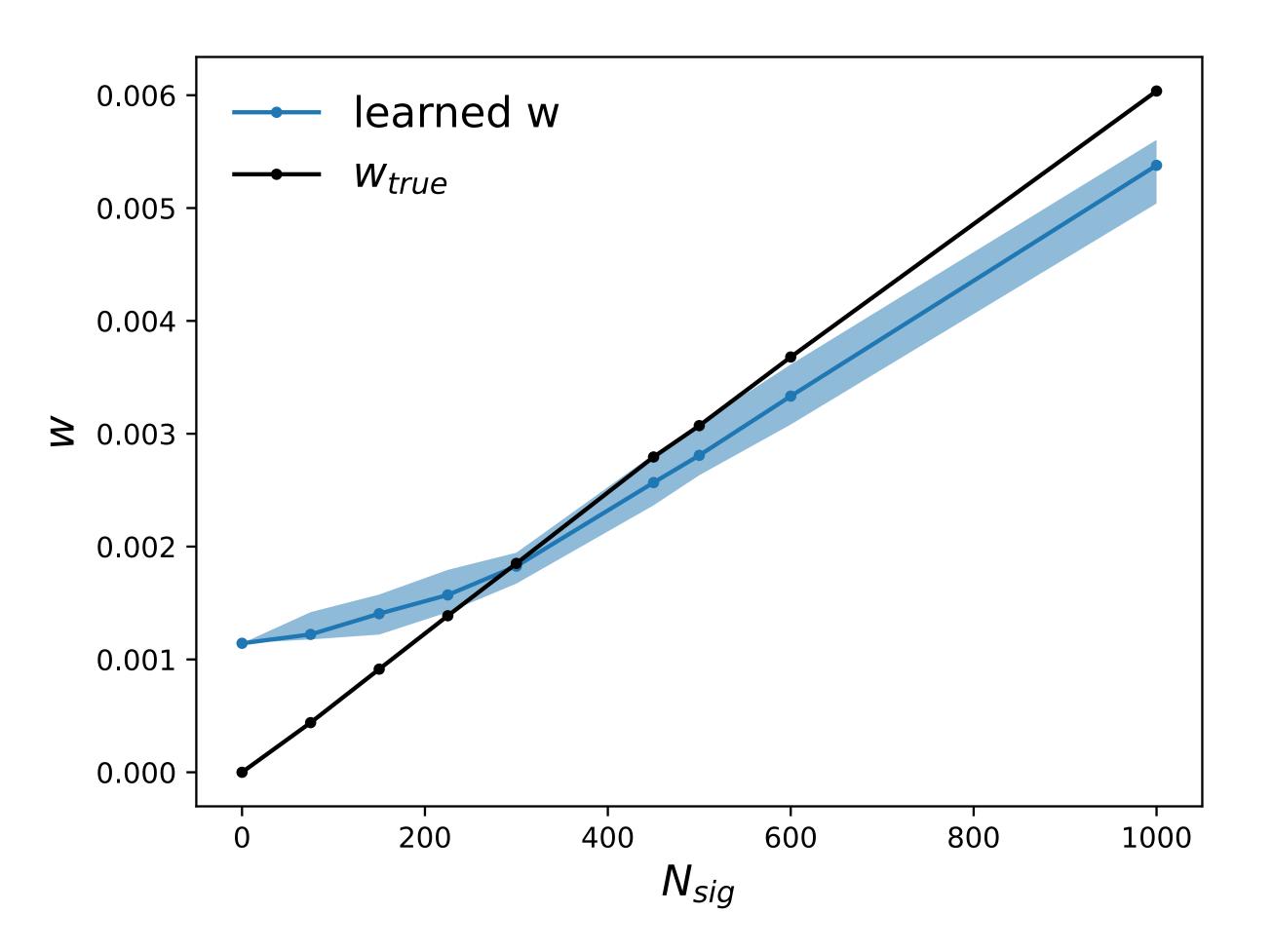






- Directly learning the signal distributions $P_S(x,m)$ leads to a more interpretable method.
- This could give us information about the signal: eg: mass of subjet, Pronginess of subjet.

Learned w



Learned w is very close to the true w values

Summary

Summary

 R-ANODE performs better than classifier-based approaches like CATHODE.

Summary

- R-ANODE performs better than classifier-based approaches like CATHODE.
- Additionally, R-ANODE learns the signal model and the signal fraction directly from data.

Further recent work

Further recent work

09:00	Foundation Models for AD	Vinny Mikuni
	Nevis Science Center, Columbia University, Nevis Laboratories	09:00 - 09:18
	AD Interpretation & Phenomenology	Anna Hallin
10:00	Nevis Science Center, Columbia University, Nevis Laboratories	09:18 - 09:36
	Incorporating Physical Priors into Weakly-Supervised Anomaly Detection Chi	Lung Cheng Cheng
	Nevis Science Center, Columbia University, Nevis Laboratories	09:36 - 09:54
	Surrogate Simulation-based Inference (S2BI)	Runze Li
	Nevis Science Center, Columbia University, Nevis Laboratories	09:54 - 10:12
	From High Dimensions to Statistical Discovery: A Contrastive Learning Approach to Anomaly Detection	on Gaia Grosso
	Nevis Science Center, Columbia University, Nevis Laboratories	10:12 - 10:30

Further recent work

GBI (earlier talk by Runze!)

Confidence intervals on the signal fraction for PAWS and R-ANODE

09:00	Foundation Models for AD	Vinny Mikuni
	Nevis Science Center, Columbia University, Nevis Laboratories	09:00 - 09:18
	AD Interpretation & Phenomenology	Anna Hallin
	Nevis Science Center, Columbia University, Nevis Laboratories	09:18 - 09:36
	Incorporating Physical Priors into Weakly-Supervised Anomaly Detection Chi Lu	ing Cheng Cheng
	Nevis Science Center, Columbia University, Nevis Laboratories	09:36 - 09:54
10:00	Surrogate Simulation-based Inference (S2BI)	Runze Li
	Nevis Science Center, Columbia University, Nevis Laboratories	09:54 - 10:12
	From High Dimensions to Statistical Discovery: A Contrastive Learning Approach to Anomaly Detection	Gaia Grosso
	Nevis Science Center, Columbia University, Nevis Laboratories	10:12 - 10:30

Based on <u>arXiv:2410.20537</u>

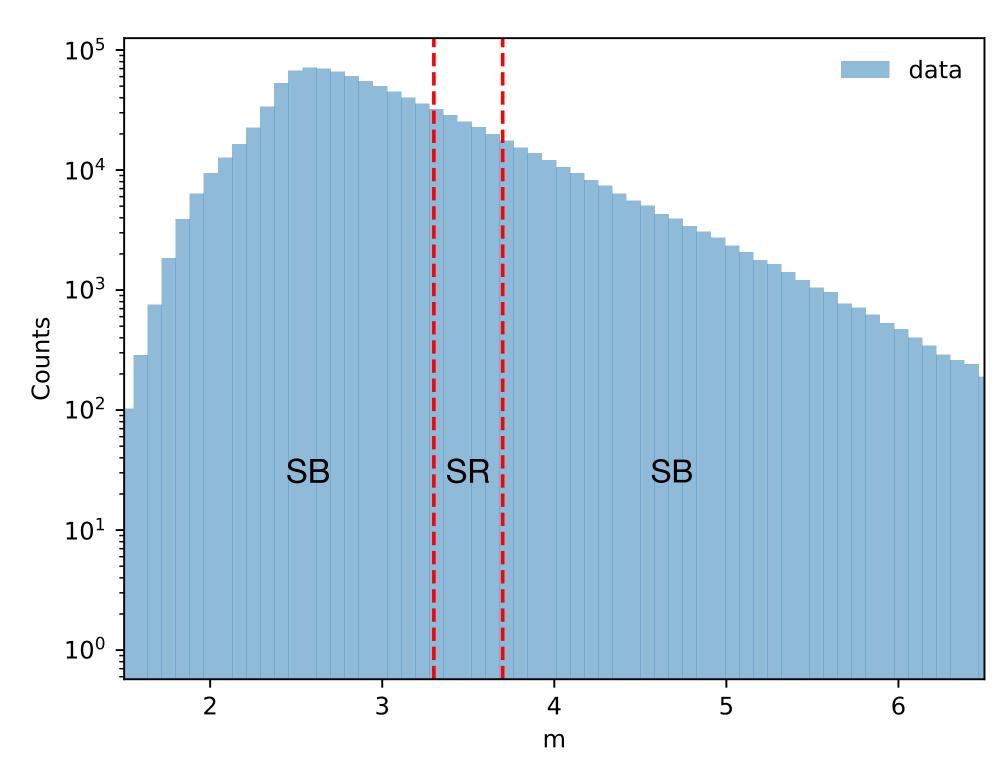
Ranit Das and David Shih

Data Driven Resonant Anomaly Detection with background interpolation

Key Steps:

• Define different Signal Regions(SR) and Side-Band Regions(SB) using a resonant feature *m*.

- For each SR, generate a background template from SB and interpolated into SR.
- Distinguish between data and background template using classifier (like CATHODE), or density estimators (like ANODE, R-ANODE).



ANODE: <u>arXiv:2001.04990v</u>2 CATHODE: <u>arXiv:2109.00546v3</u>

CURTAINS: <u>arXiv:2203.09470v3</u>

R-ANODE: <u>arXiv:2312.11629</u>

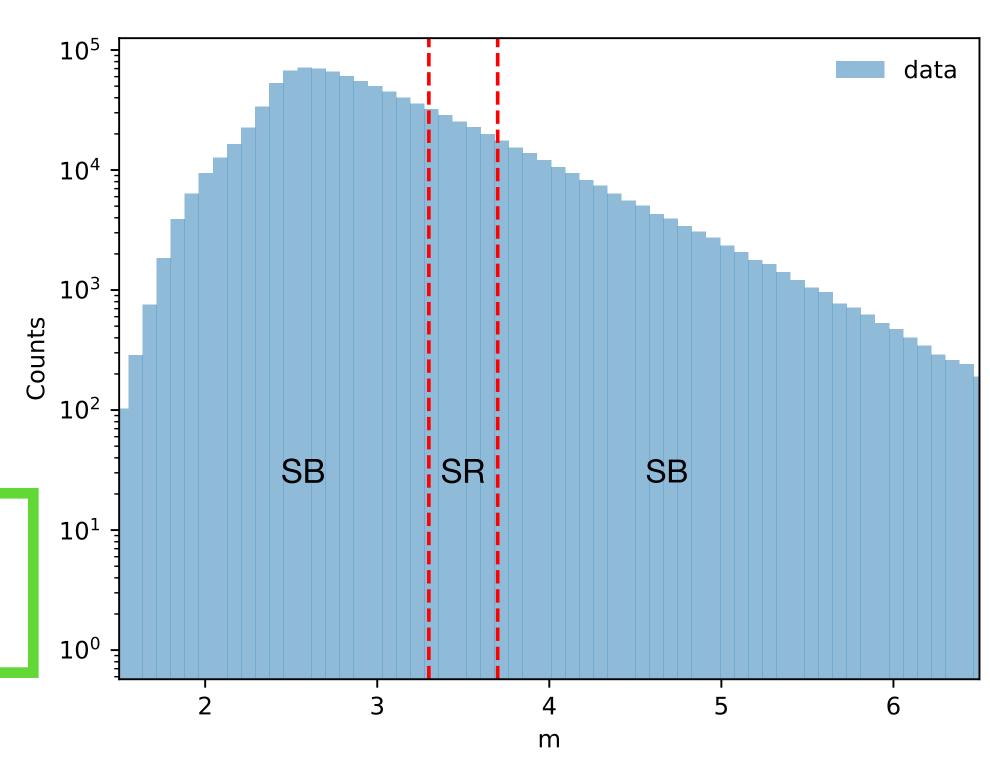
Data Driven Resonant Anomaly Detection with background interpolation

Key Steps:

• Define different Signal Regions(SR) and Side-Band Regions(SB) using a resonant feature *m*.

SIGMA

- For each SR, generate a background template from SB and interpolated into SR.
- Distinguish between data and background template using classifier (like CATHODE), or density estimators (like ANODE, R-ANODE).



ANODE: <u>arXiv:2001.04990v</u>2 CATHODE: <u>arXiv:2109.00546v3</u>

CURTAINS: <u>arXiv:2203.09470v3</u>

R-ANODE: <u>arXiv:2312.11629</u>

Data Driven Resonant Anomaly Detection with background interpolation

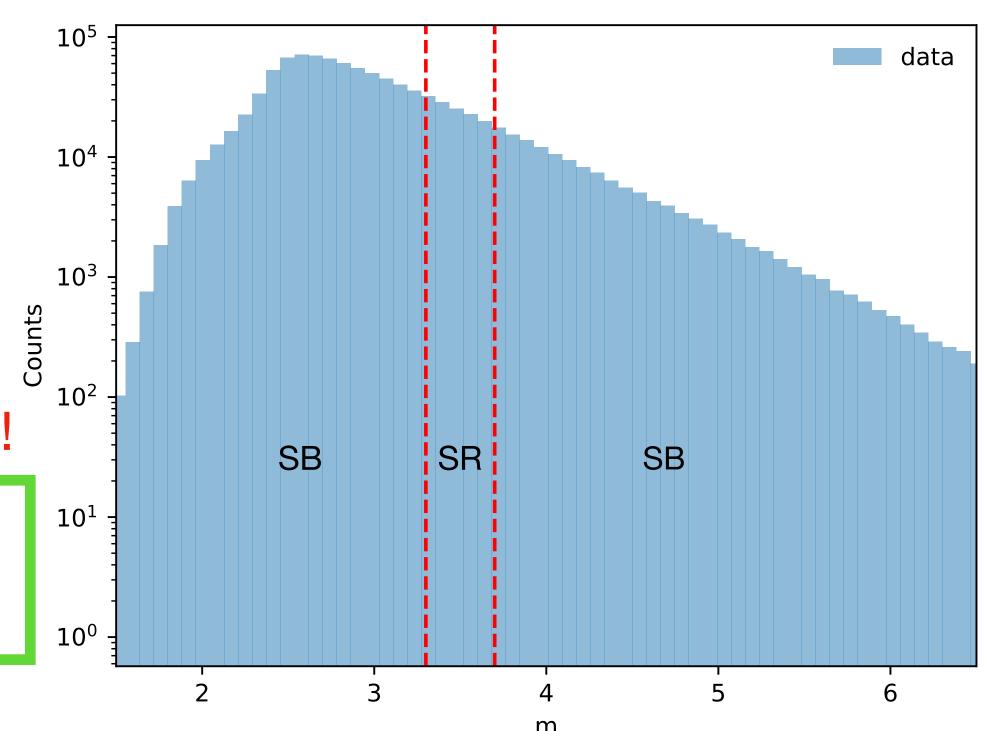
Key Steps:

• Define different Signal Regions(SR) and Side-Band Regions(SB) using a resonant feature *m*.

SIGMA

Problem: Computationally expensive!

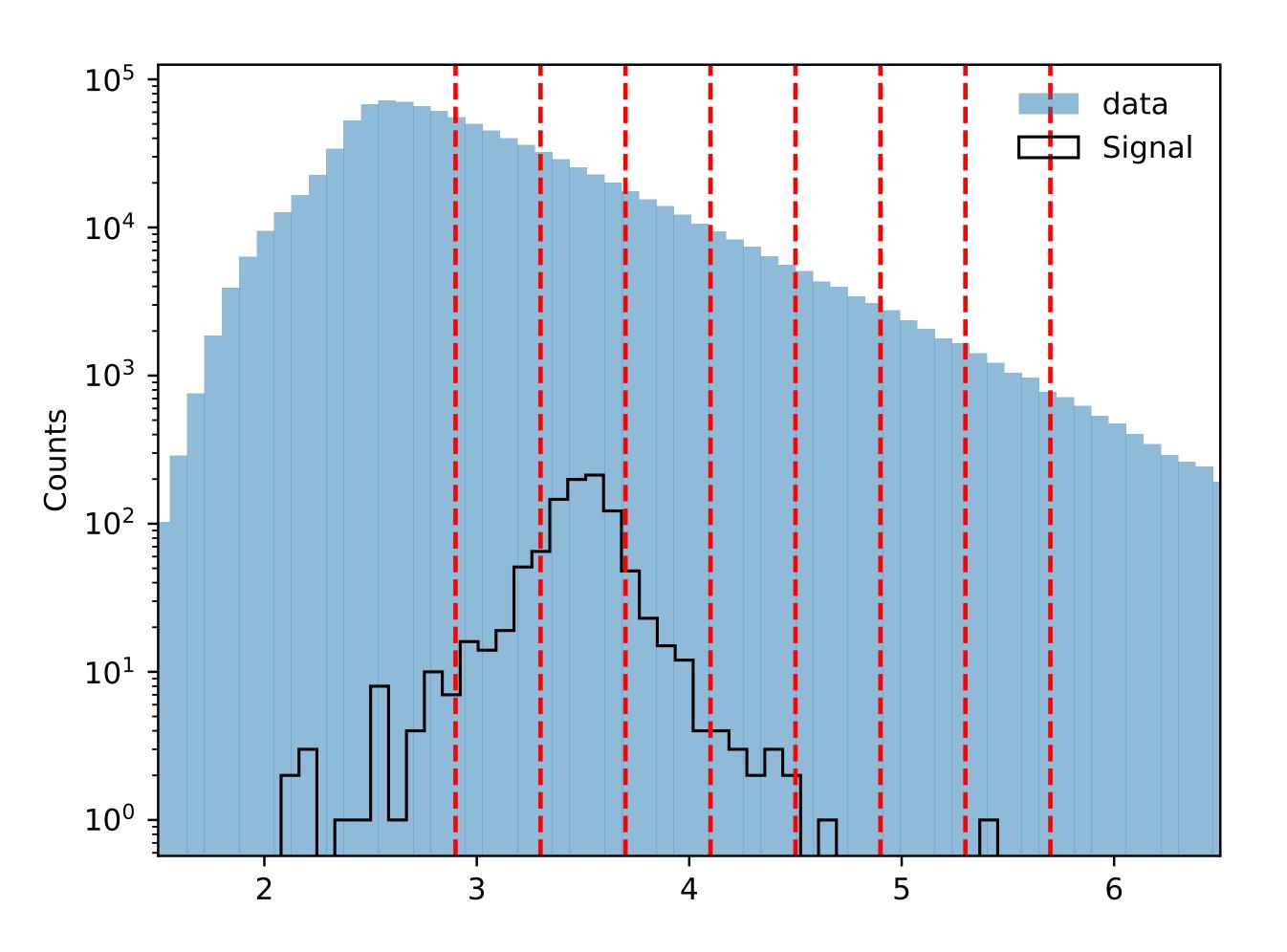
- For each SR, generate a background template from SB and interpolated into SR.
- Distinguish between data and background template using classifier (like CATHODE), or density estimators (like ANODE, R-ANODE).



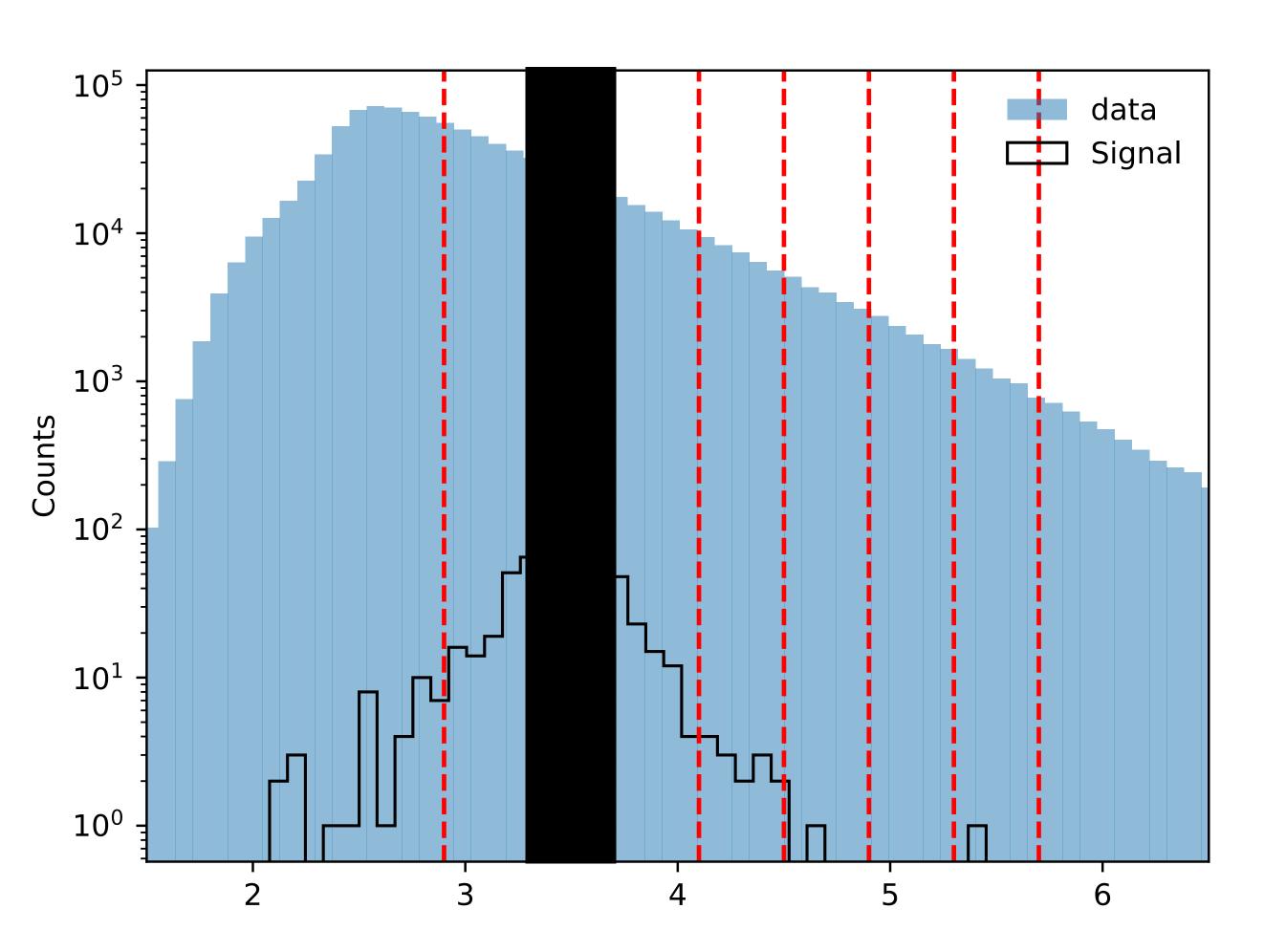
ANODE: <u>arXiv:2001.04990v</u>2 CATHODE: <u>arXiv:2109.00546v3</u>

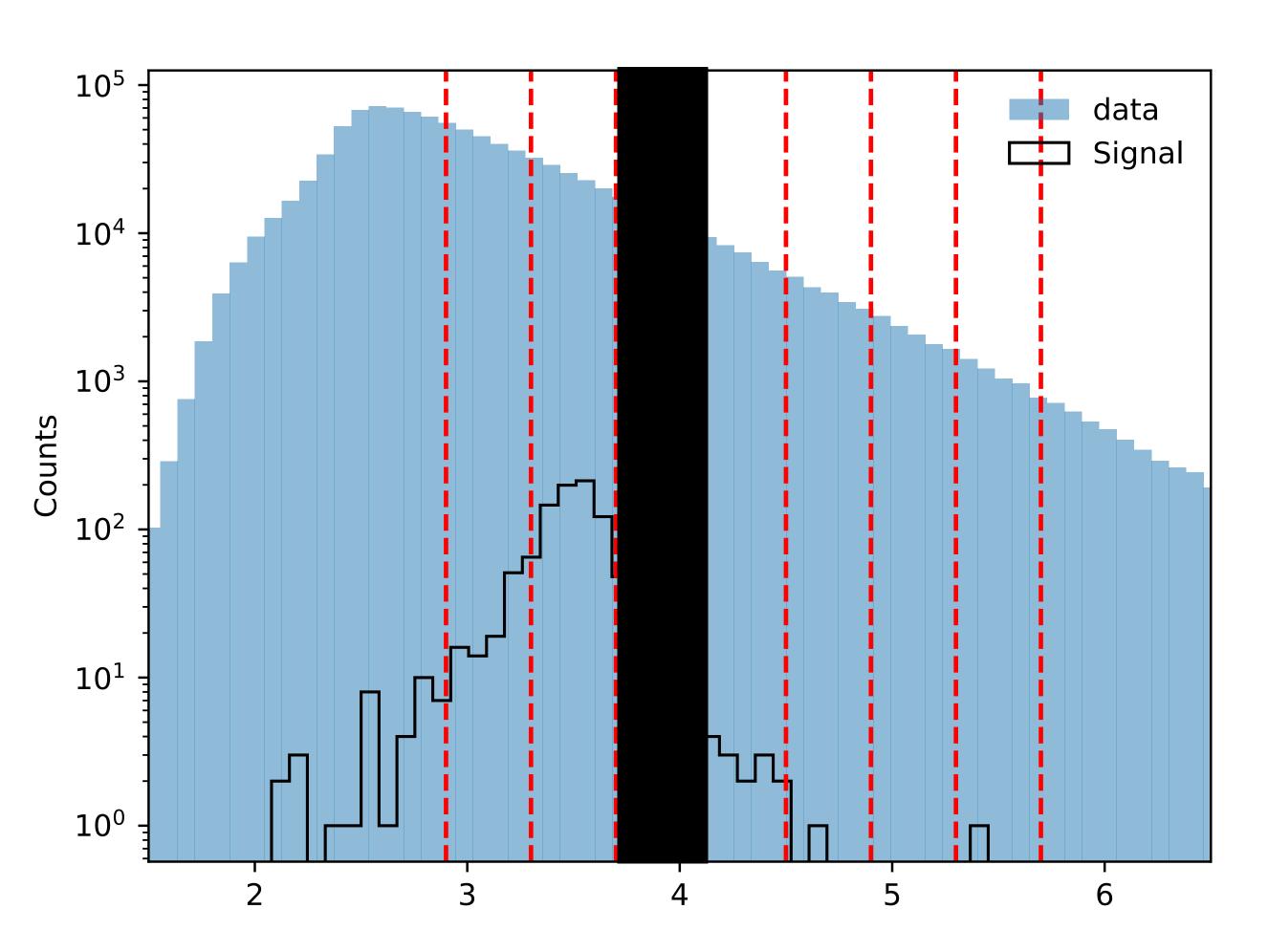
CURTAINS: <u>arXiv:2203.09470v3</u>

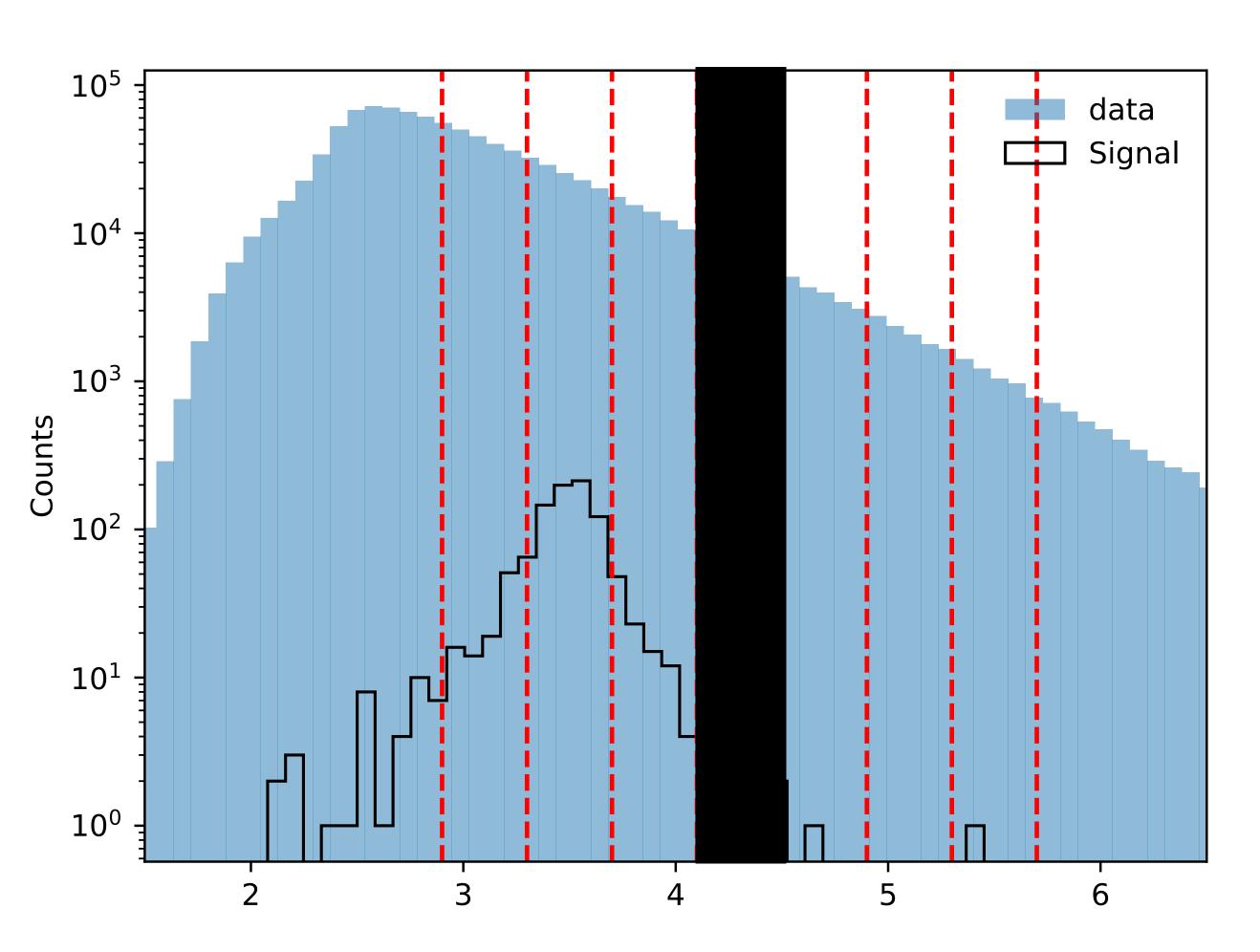
R-ANODE: <u>arXiv:2312.11629</u>

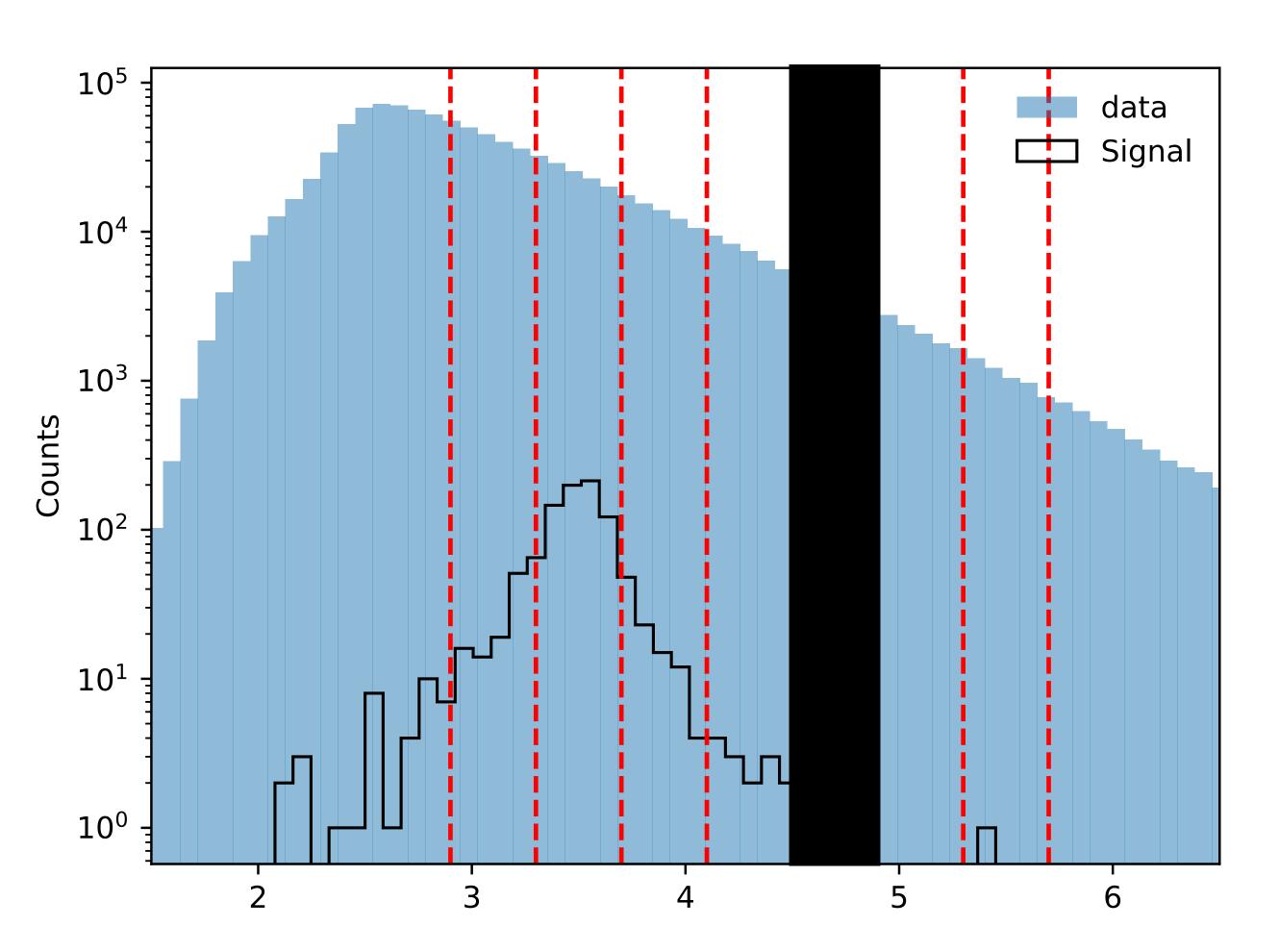


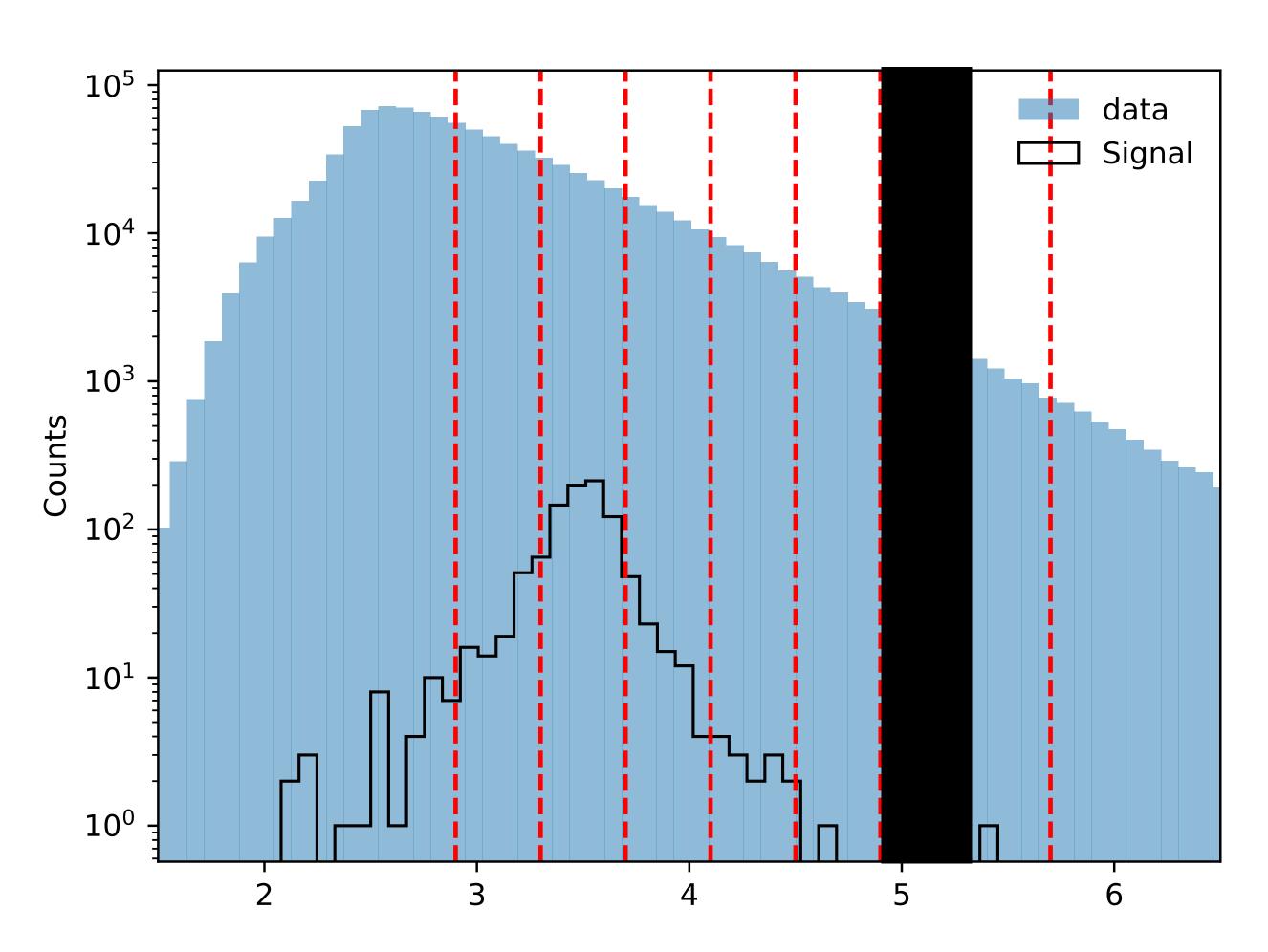


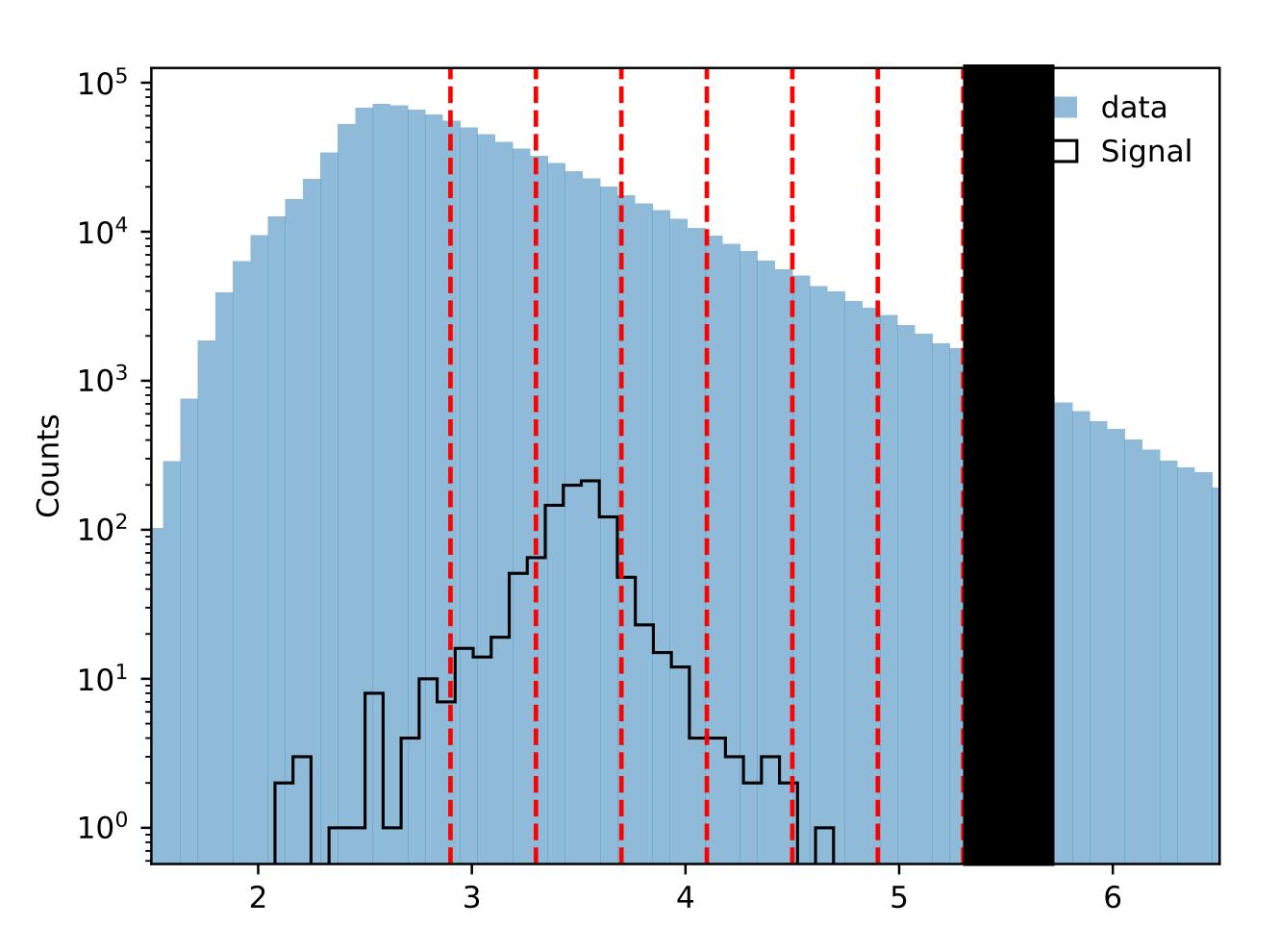






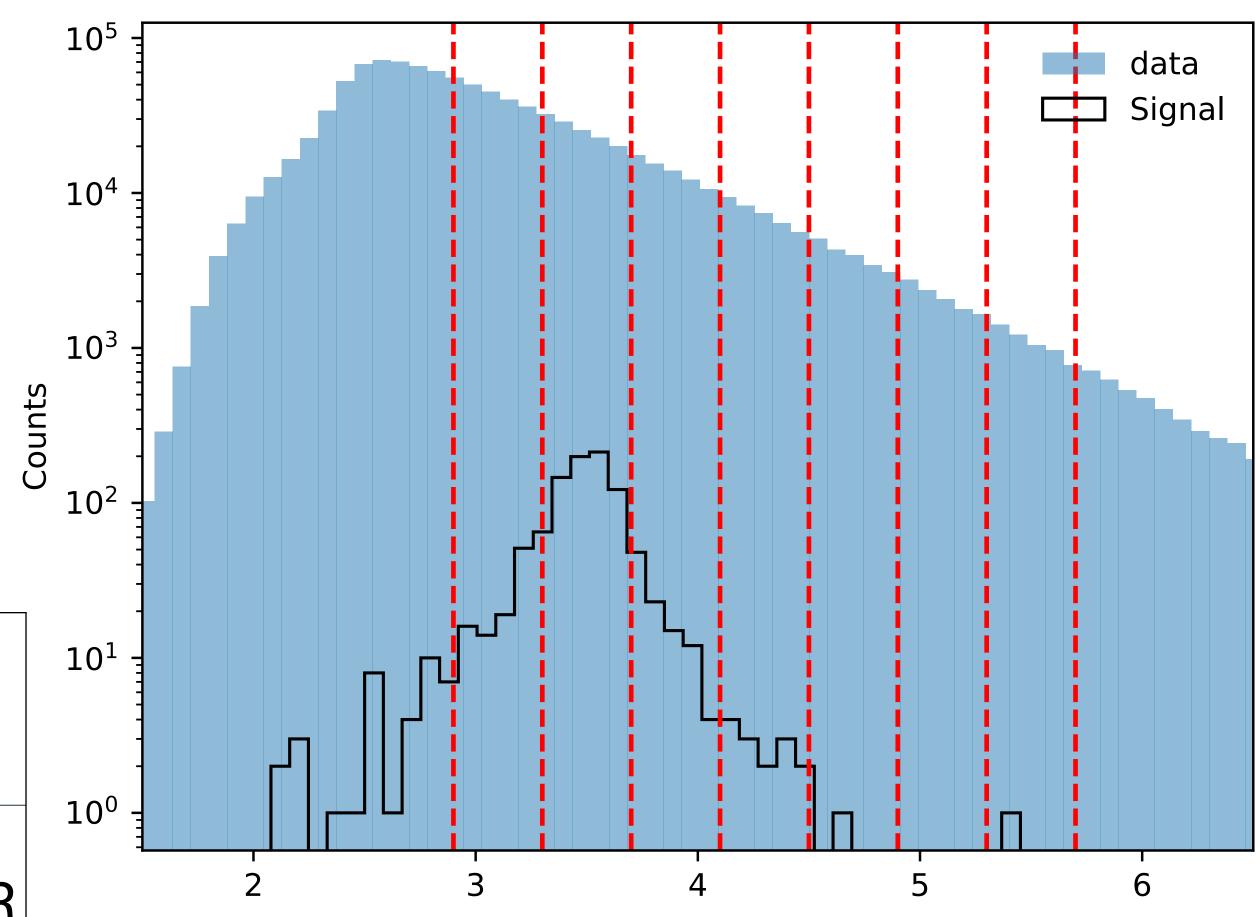




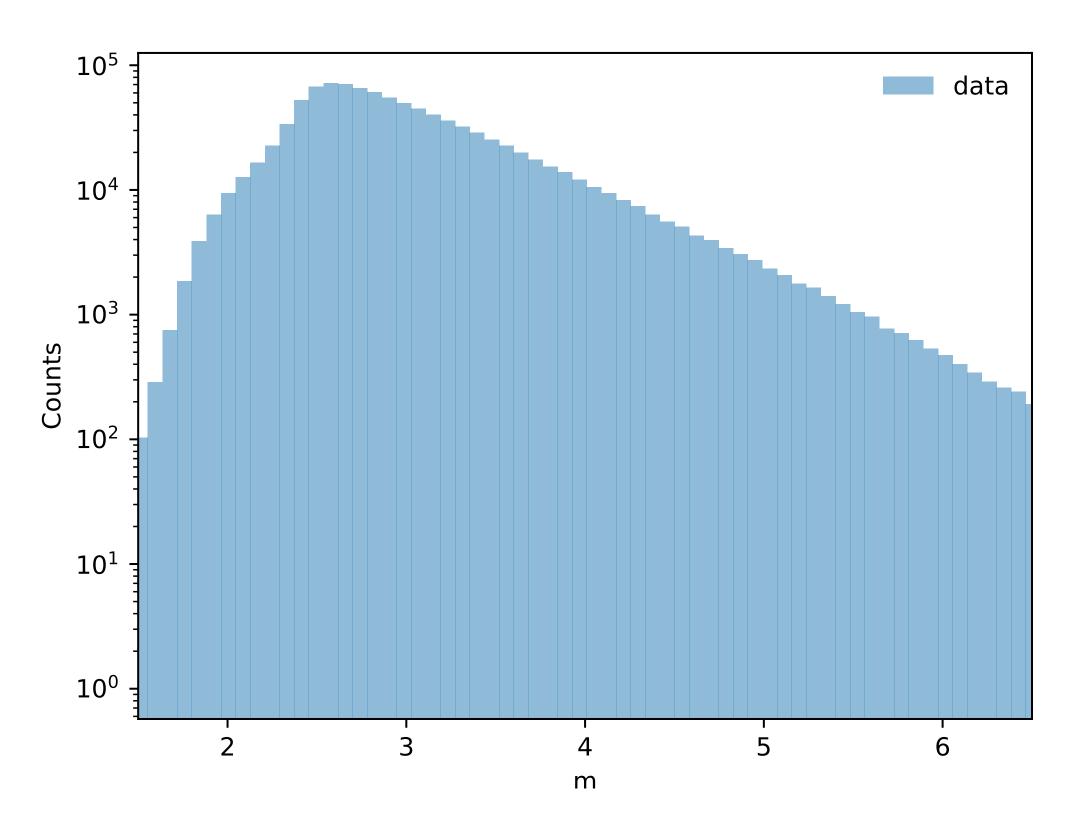


- For each SR, a separate generative model is re-trained on almost the entire data, by masking out that SR.
- This makes the method computationally expensive for datasets with many SRs!

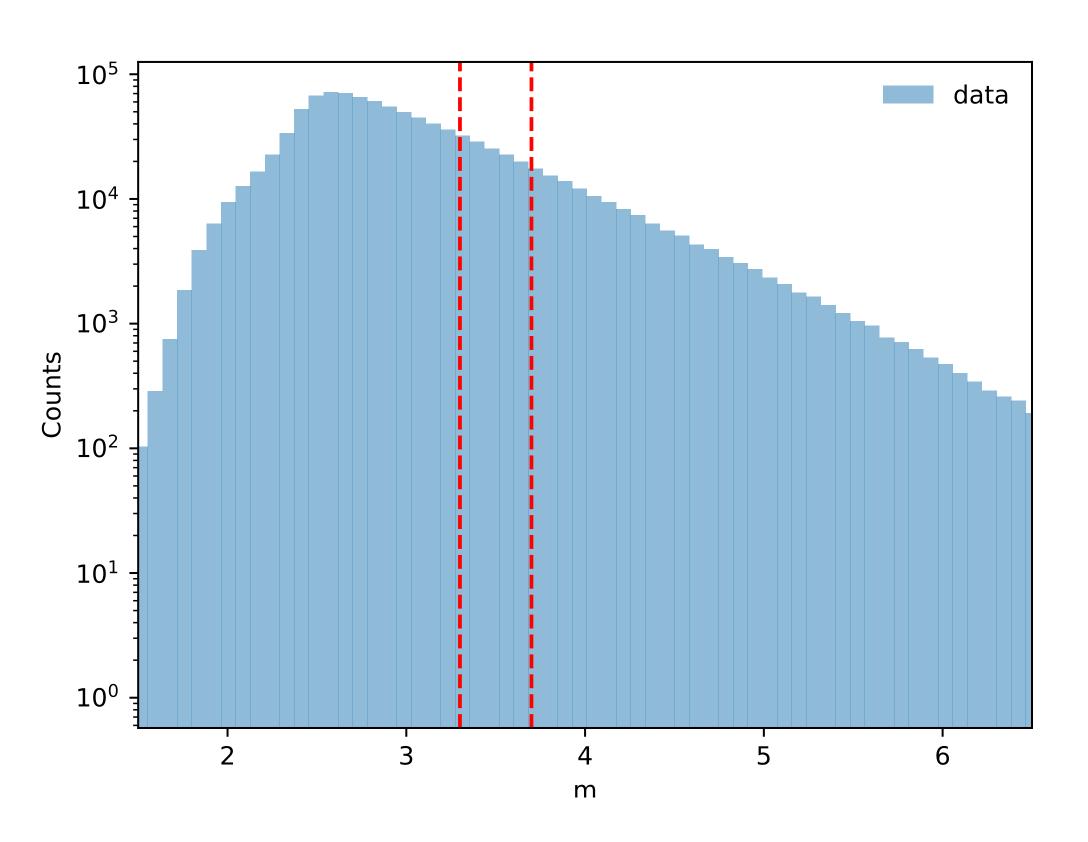
Method	Generative Model	Timing
CATHODE/ ANODE	Normalizing Flows	3 hours per SR



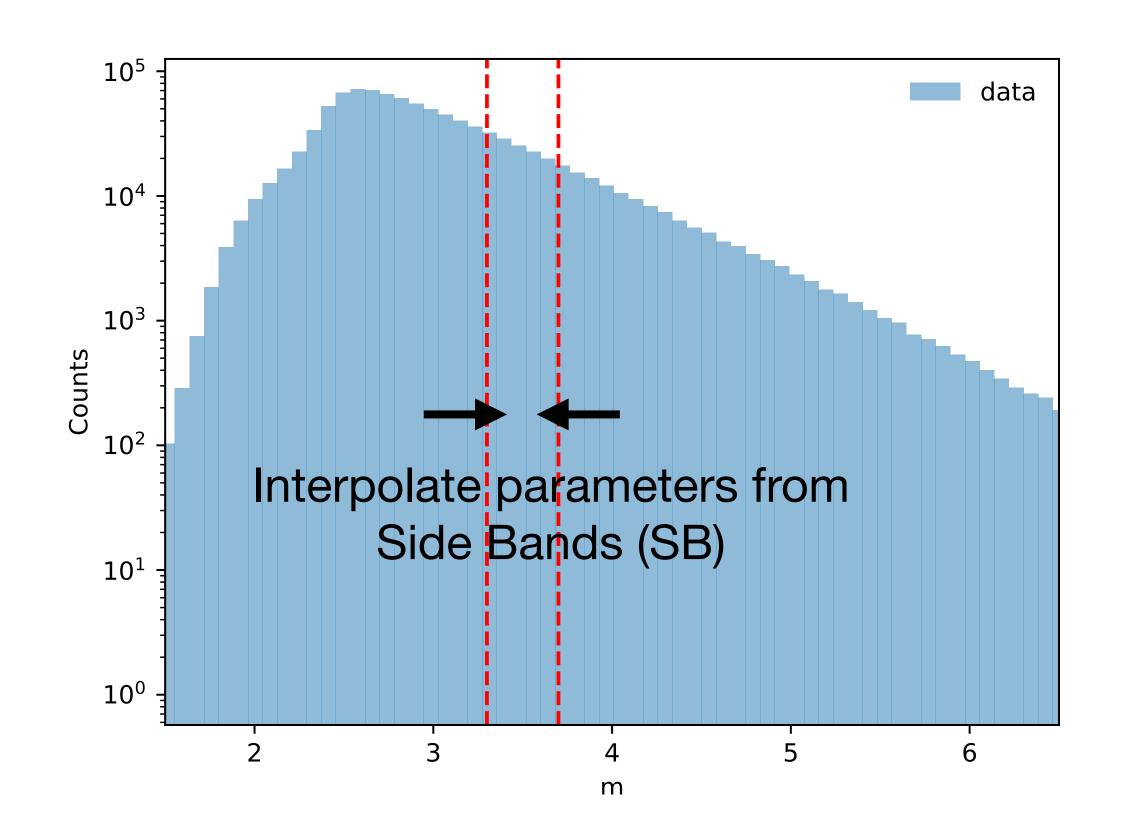
 We train a single generative model, conditioned on the resonant feature *m*, on the entire dataset including signal.



 We train a single generative model, conditioned on the resonant feature *m*, on the entire dataset including signal.



- We train a single generative model, conditioned on the resonant feature *m*, on the entire dataset including signal.
- For each SR, we interpolate the parameters of this model from nearby SB.
- Background template for all SRs are generated from a single trained model (no other training required).



Known
Base
Distribution

Known
Base
Distribution

Unknown
Data
Distribution

Known

Distribution

Base

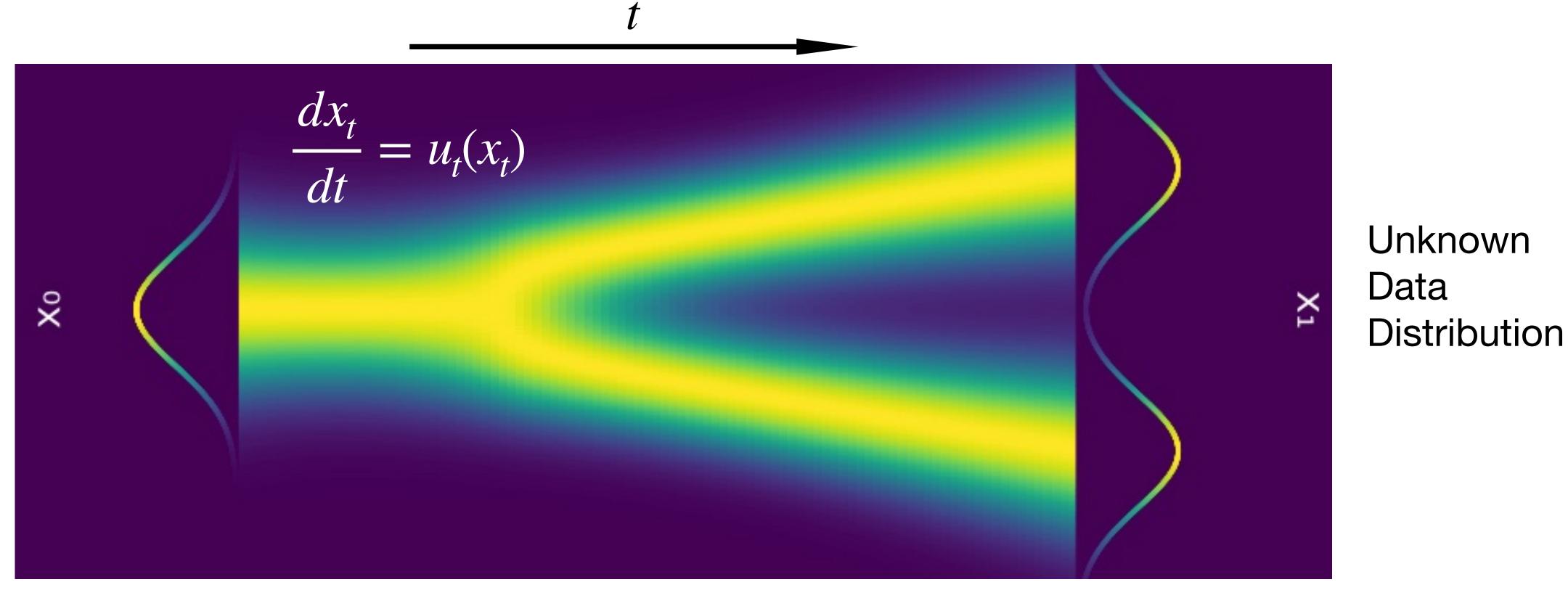
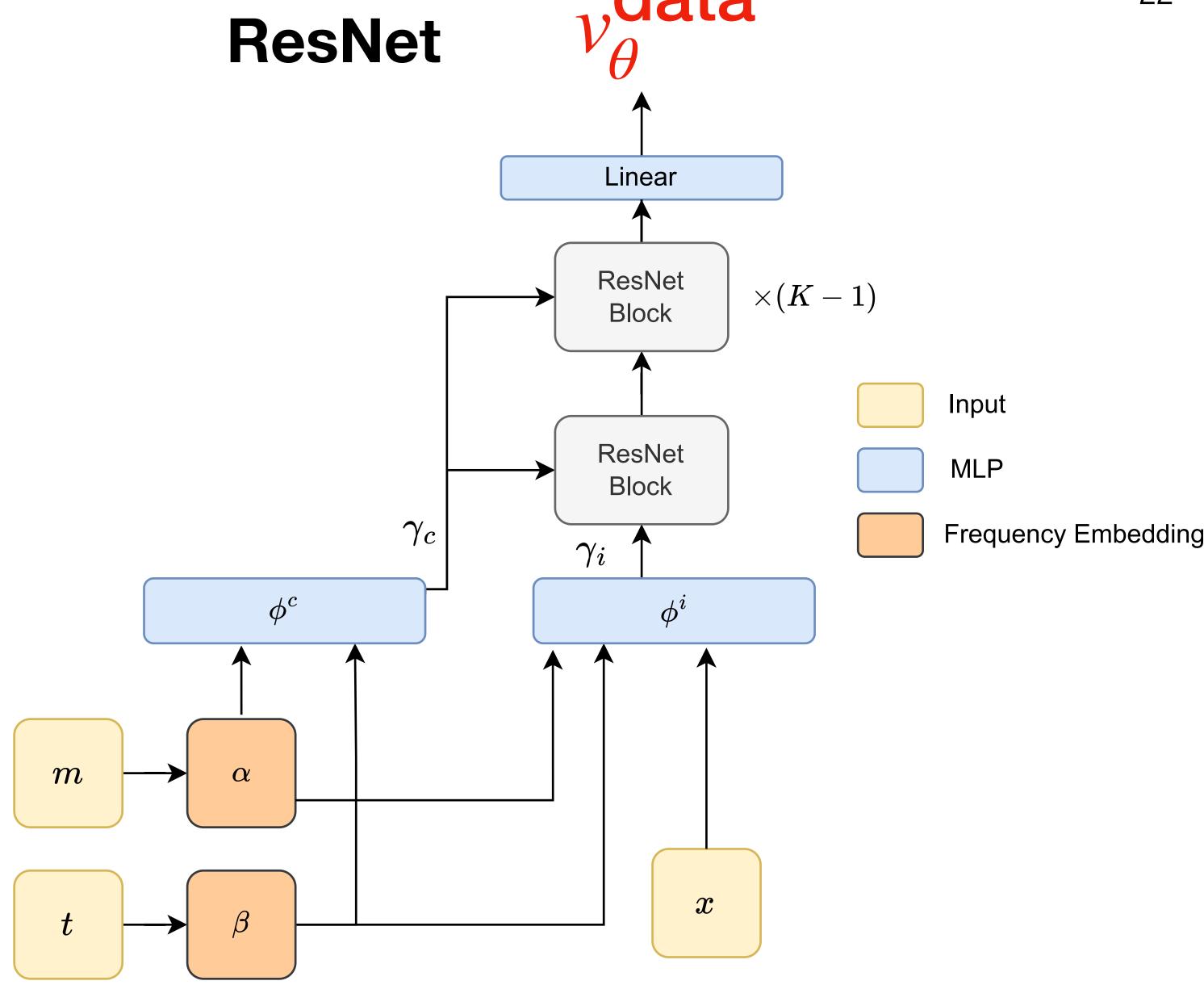


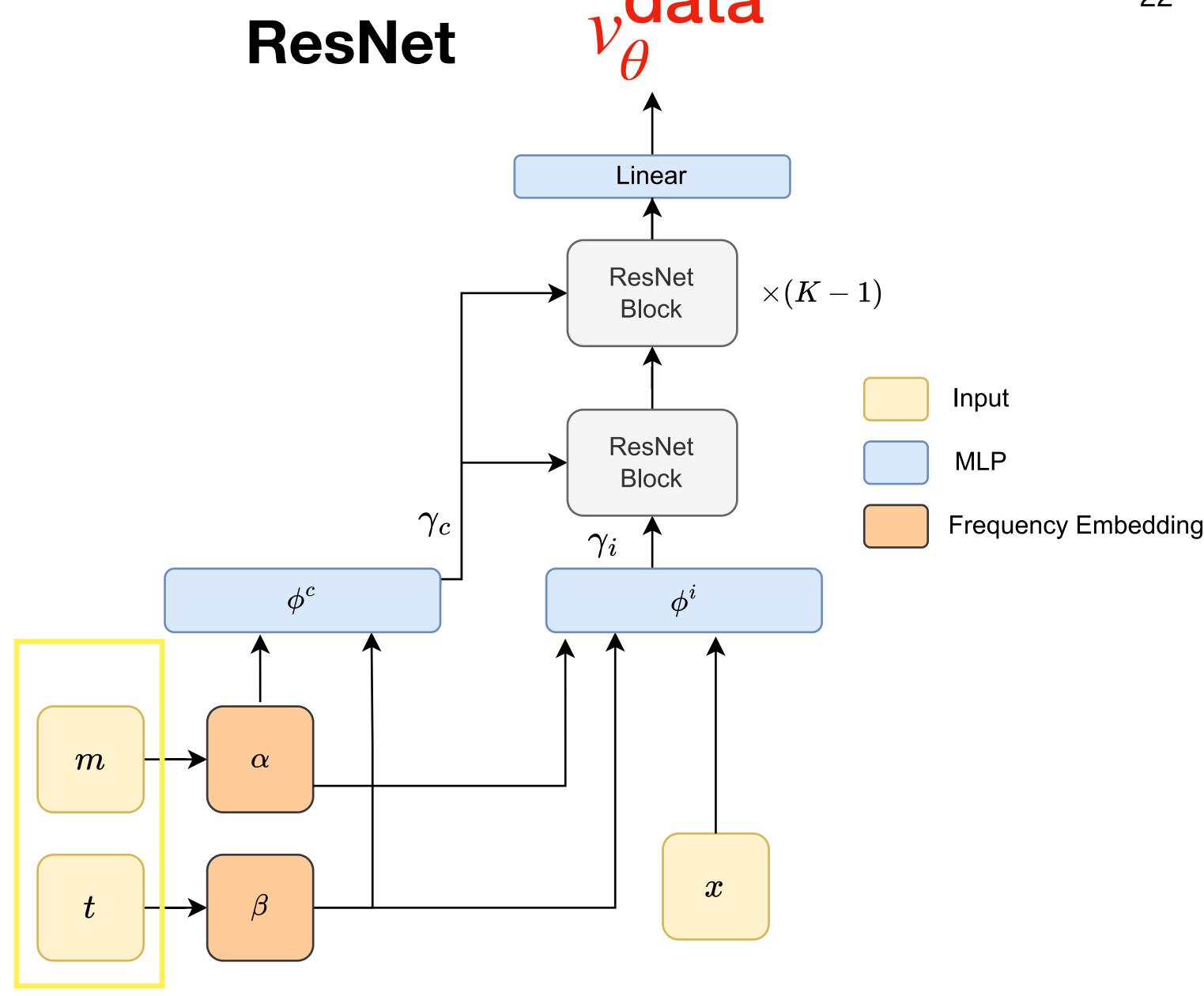
Image from https://mlg.eng.cam.ac.uk/blog/2024/01/20/flow-matching.html

Trains a neural network $v_{\theta}(x \mid t)$ to regress a conditional vector field $u_t(x \mid x_1)$, thereby learning the vector field $u_t(x)$

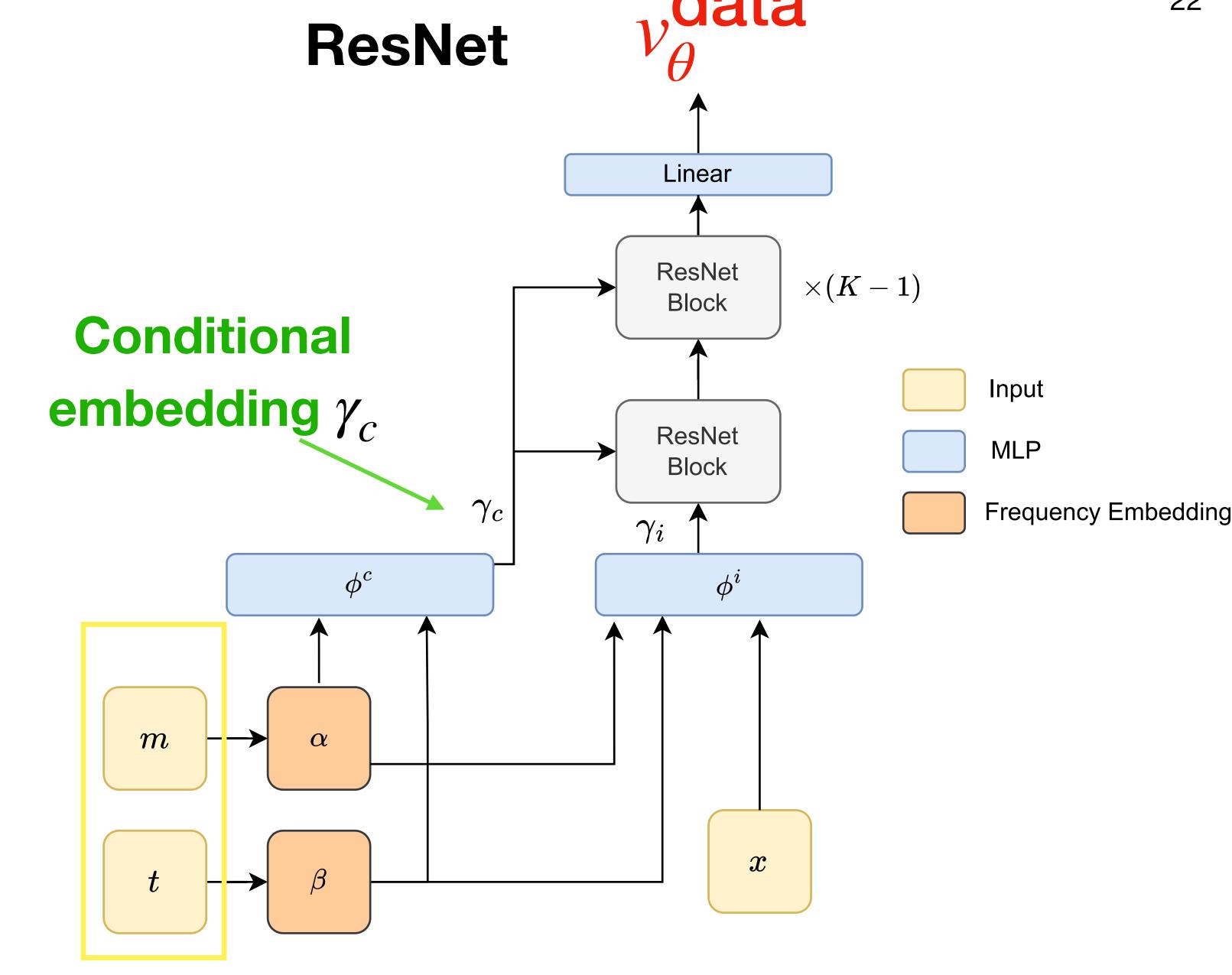
arXiv:2310.00049: EPiC-ly Fast Particle Cloud Generation with Flow-Matching and Diffusion arXiv:2209.15571: Building Normalizing Flows with Stochastic Interpolants

<u>arXiv:2210.02747:</u> Flow Matching for Generative Modeling <u>arXiv:2312.00123</u>: Flow Matching Beyond Kinematics: Generating Jets with Particle-ID and Trajectory Displacement Information

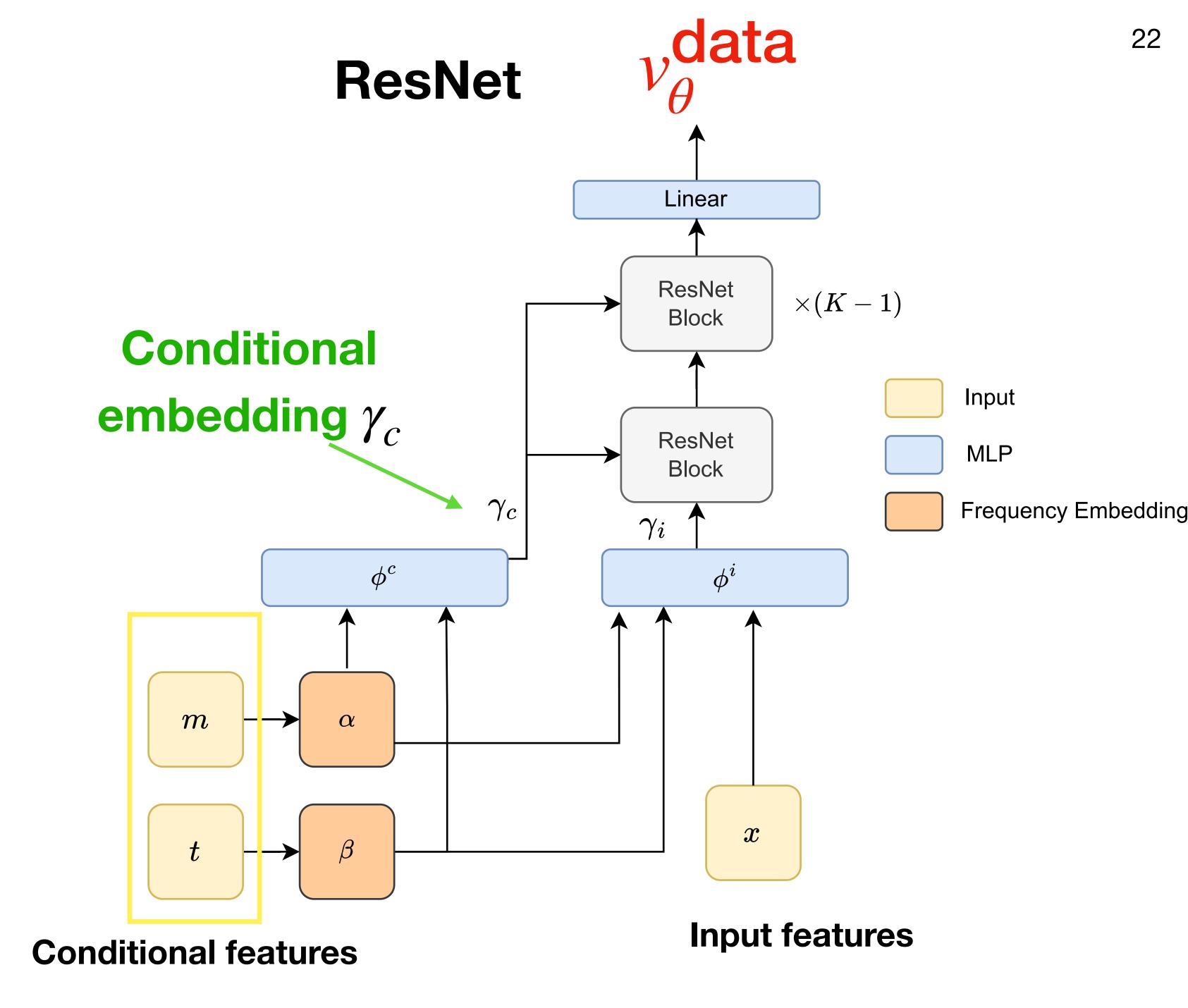


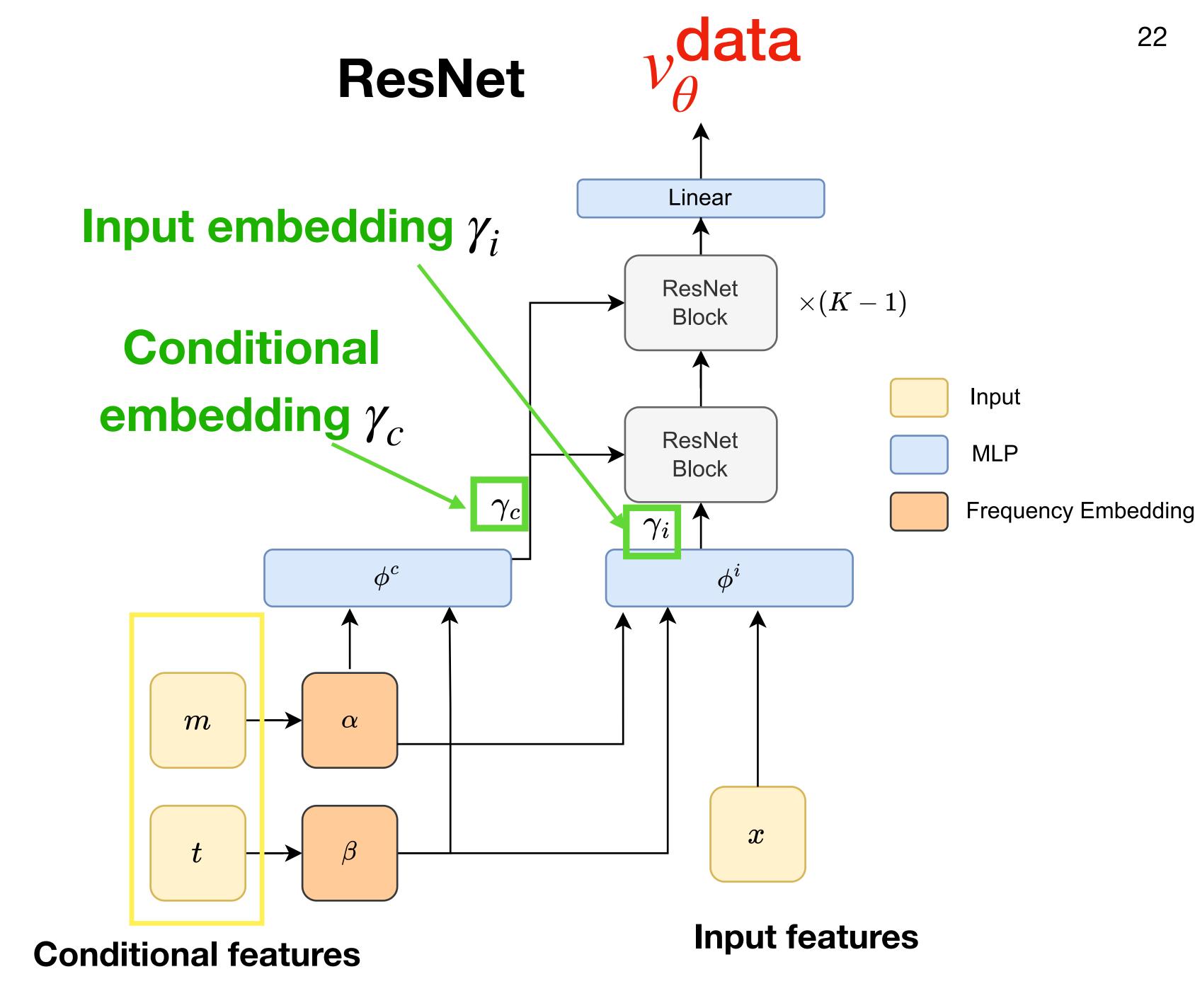


Conditional features



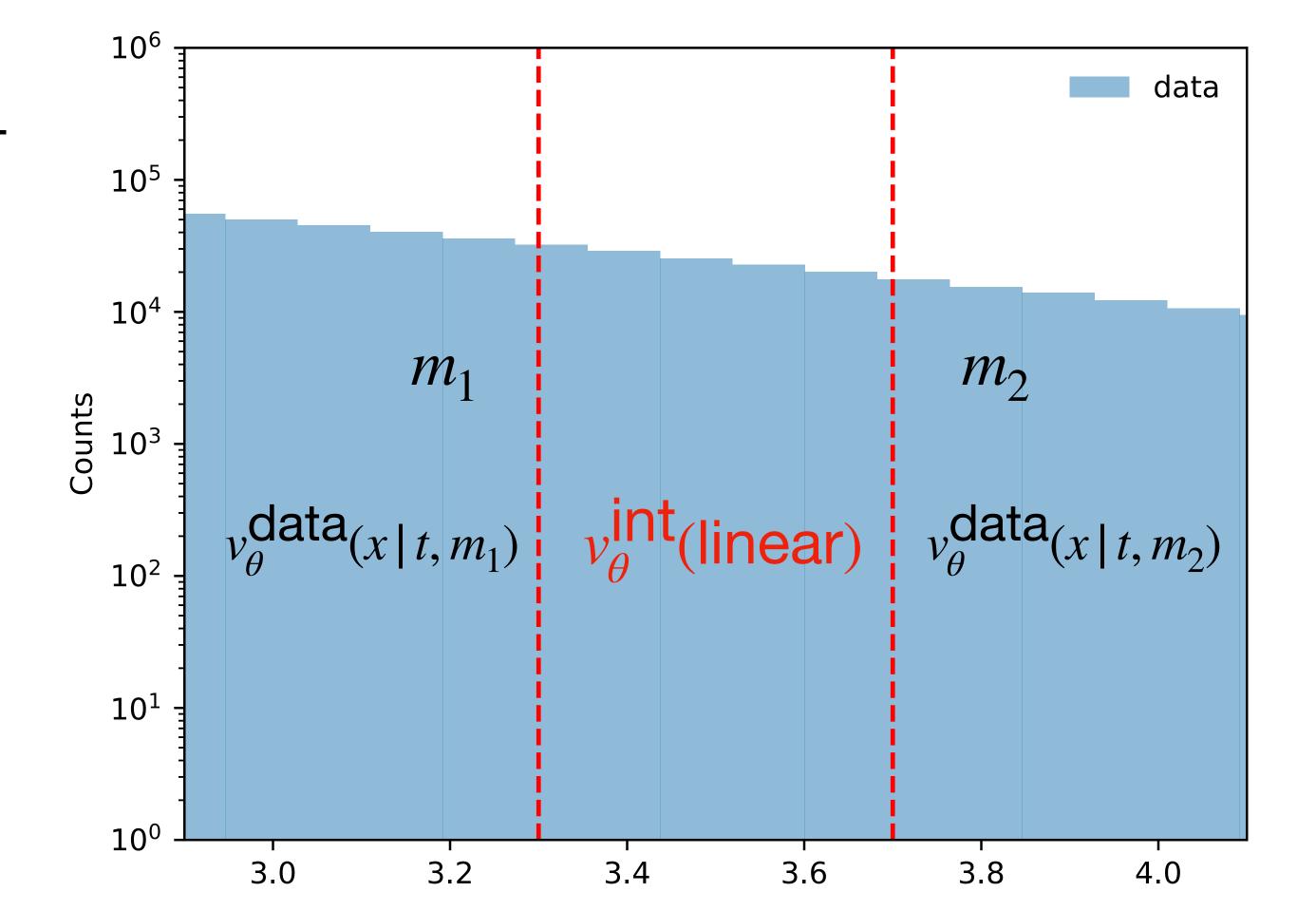
Conditional features



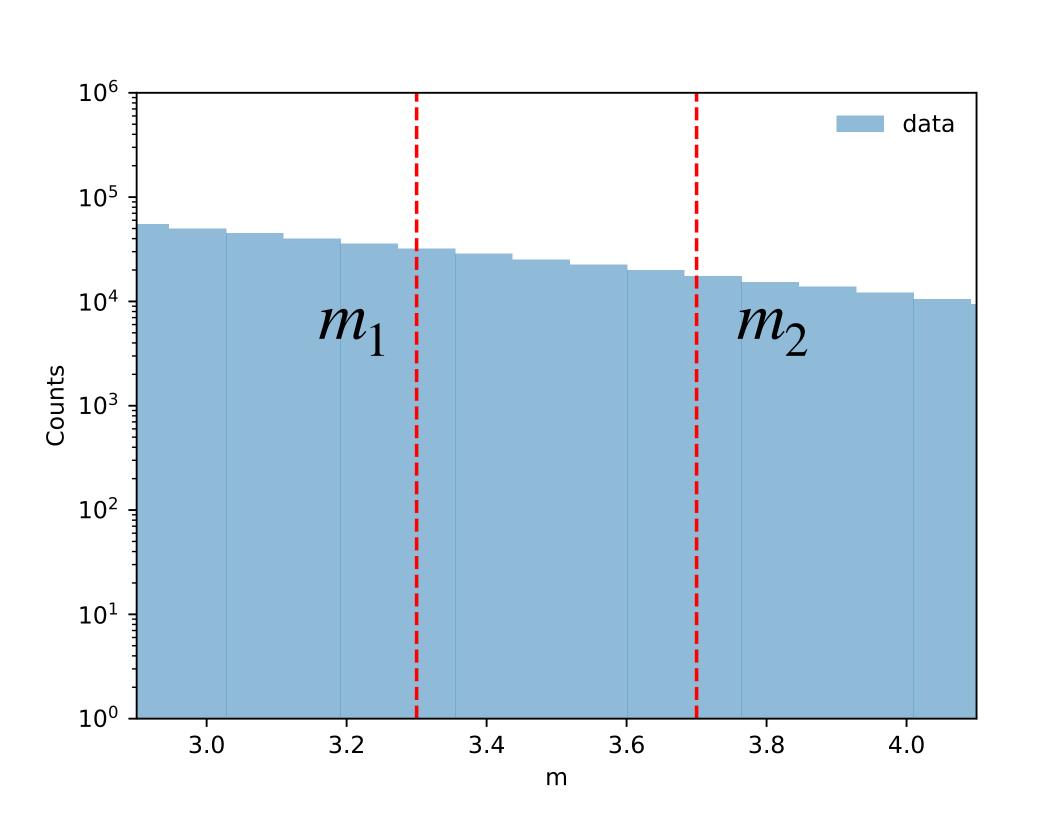


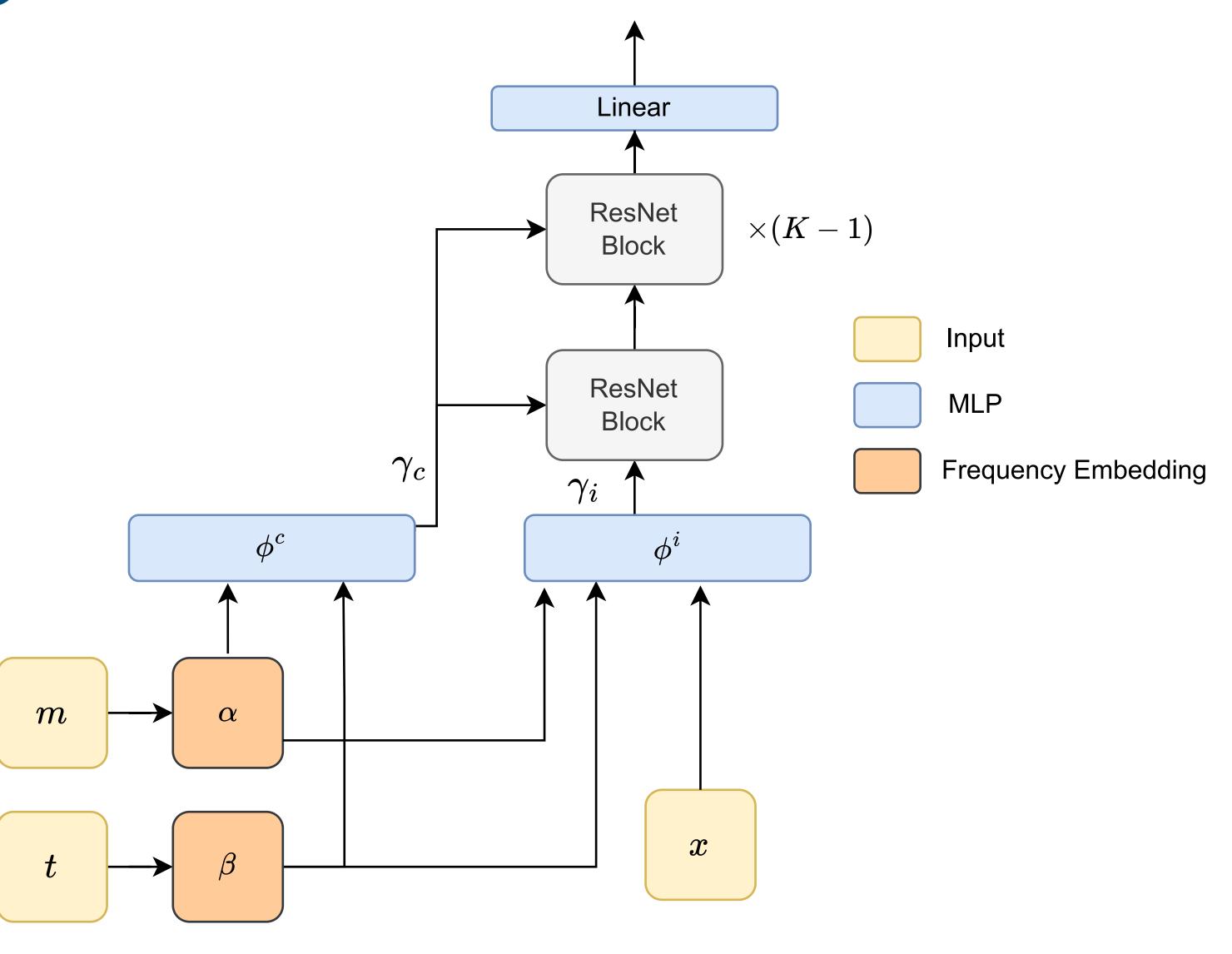
•
$$v_{\theta}^{\text{int}}(x \mid t, m) = \xi * v_{\theta}^{\text{data}}(x \mid t, m_1) + (1 - \xi) * v_{\theta}^{\text{data}}(x \mid t, m_2)$$

$$\xi = \frac{m - m_2}{m_1 - m_2}$$

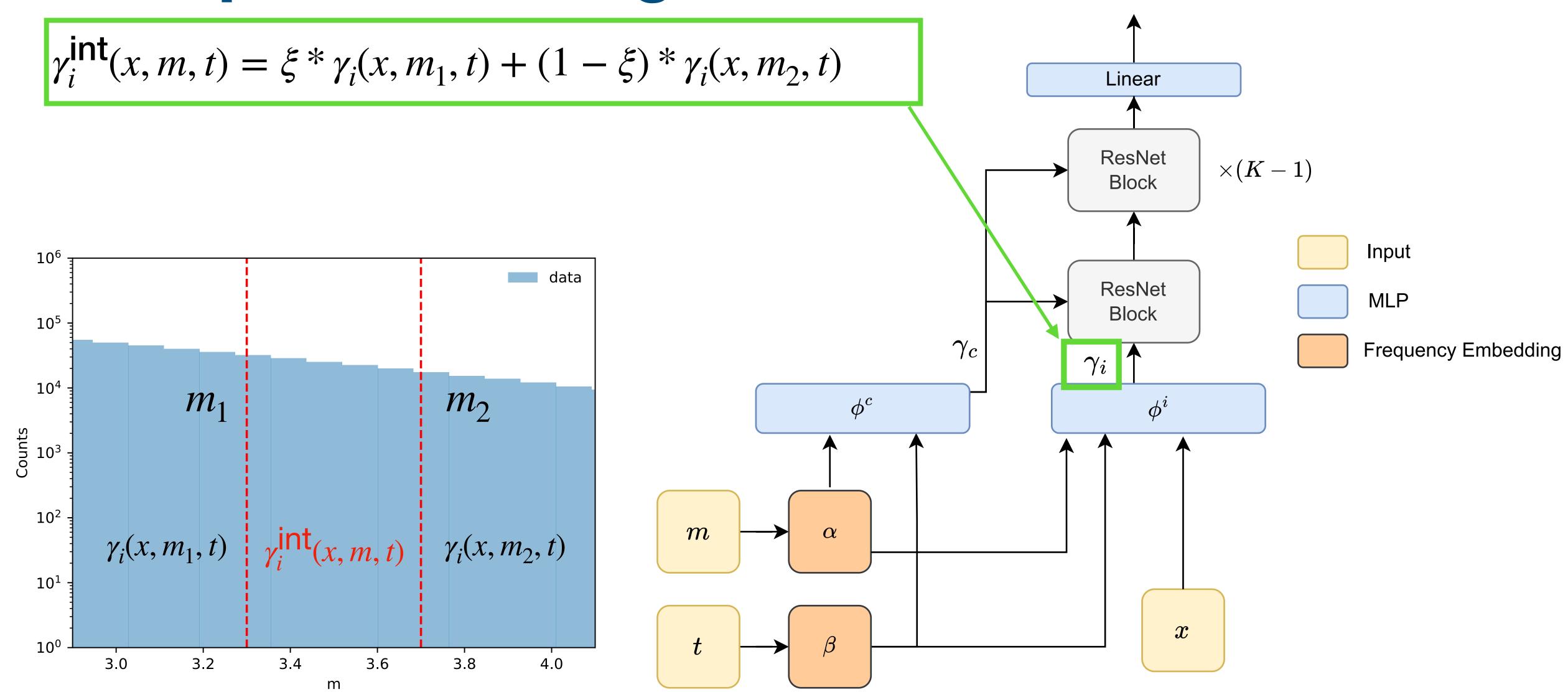


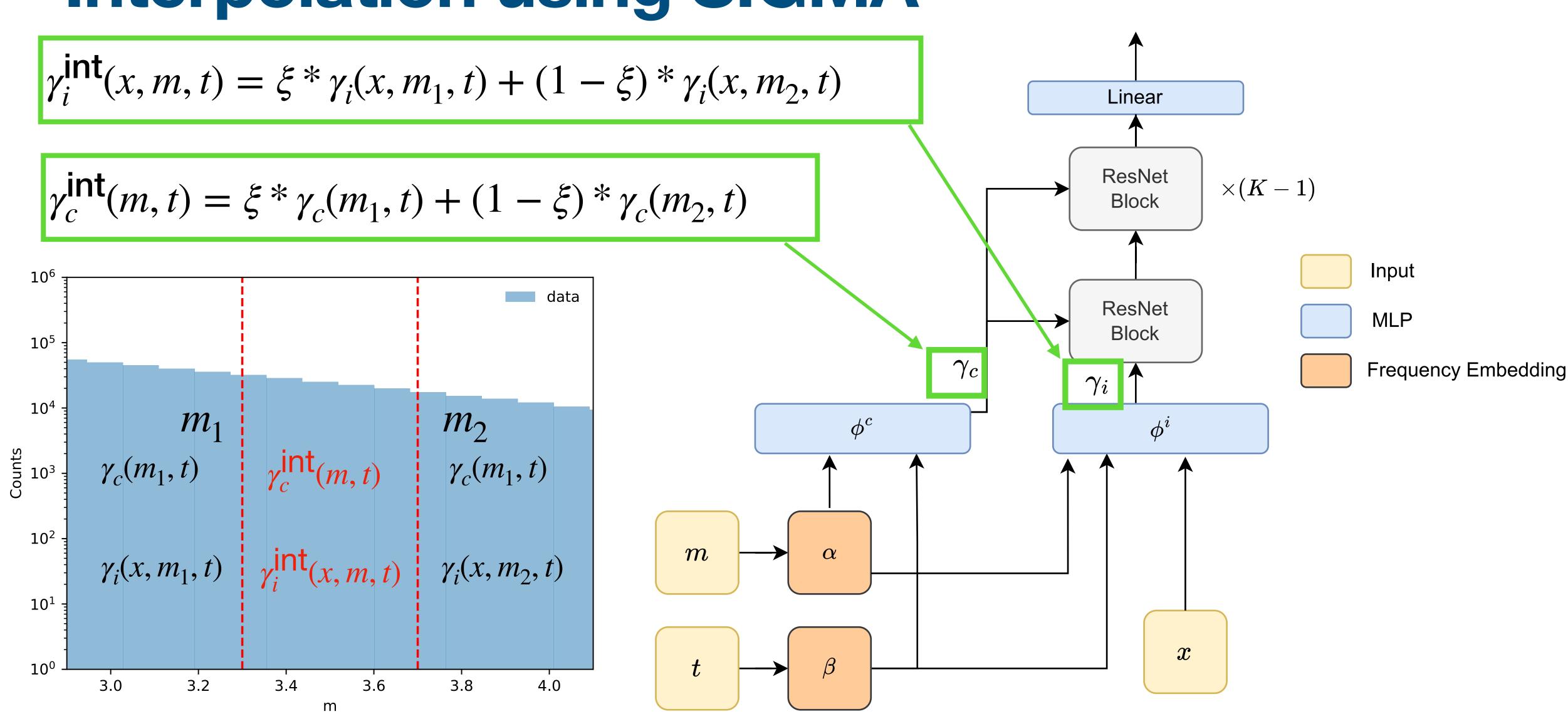
Linearly
Interpolate the
vector field from
the Sidebands!



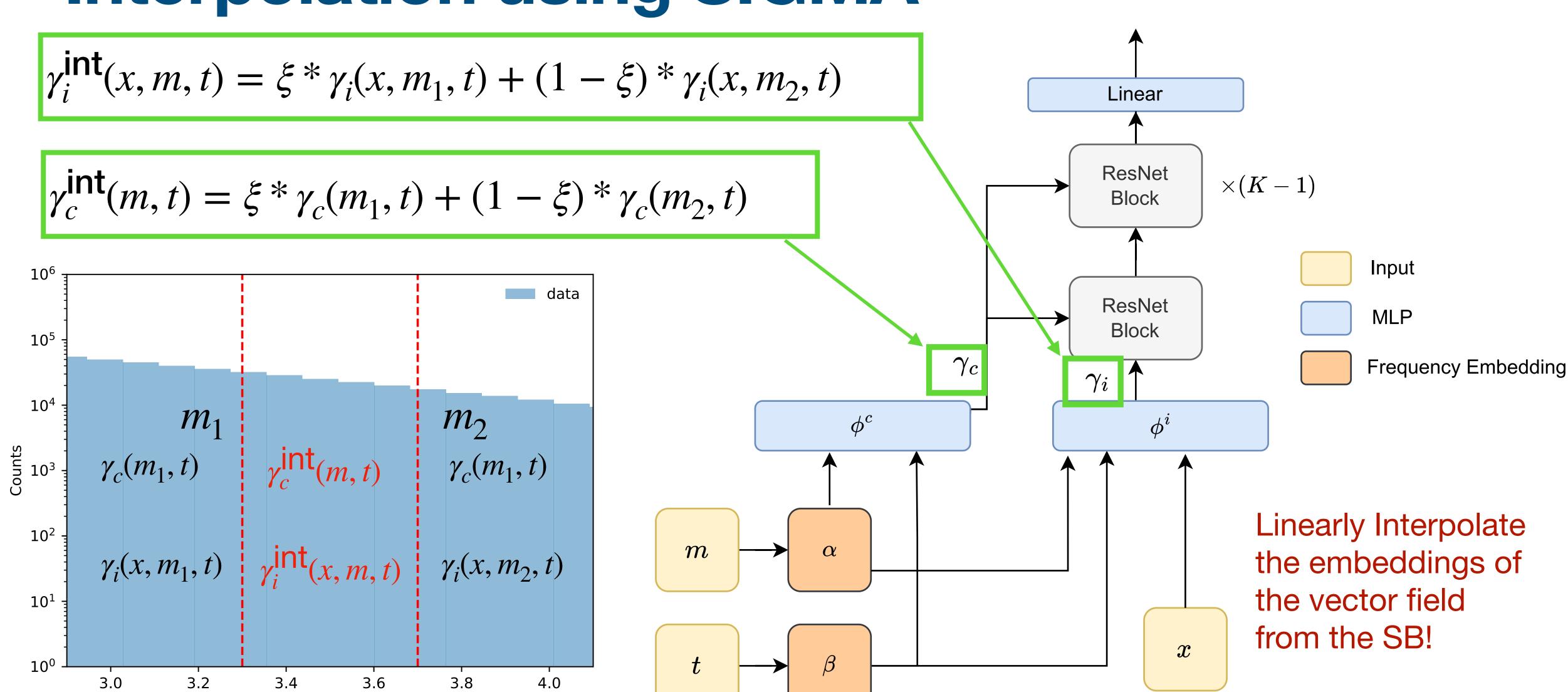


 $v_{\theta}^{\text{int}}(\text{context})$

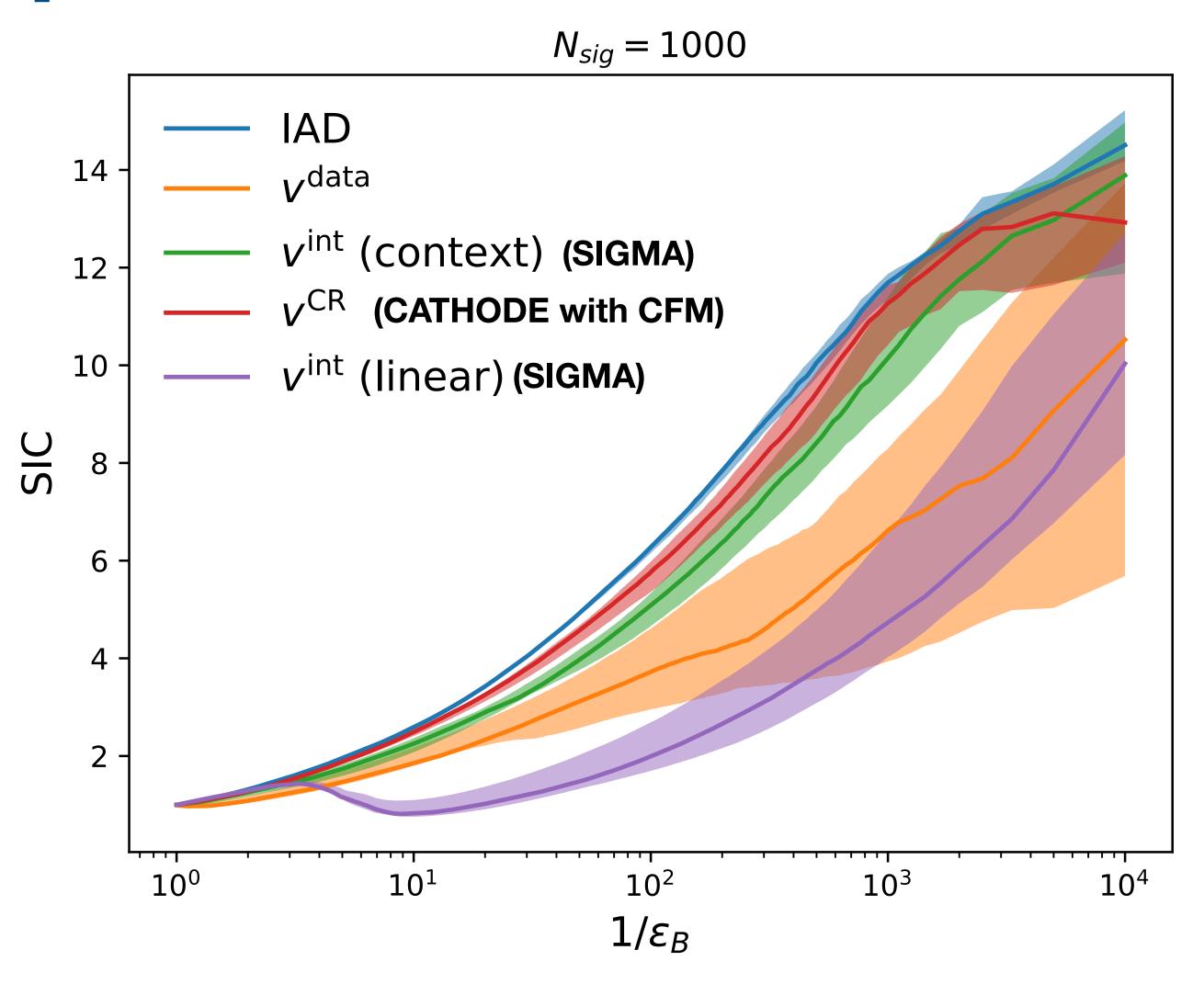




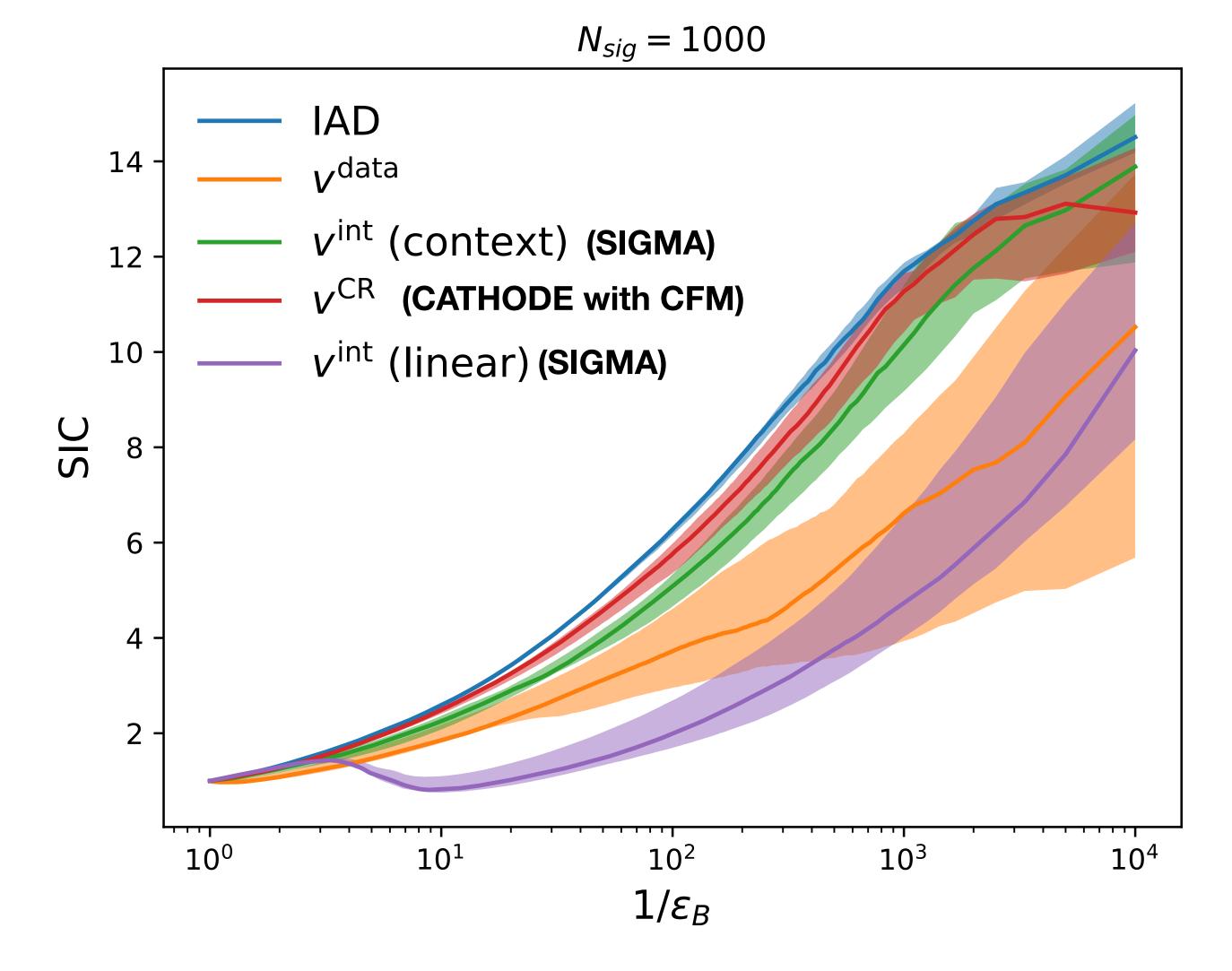
m



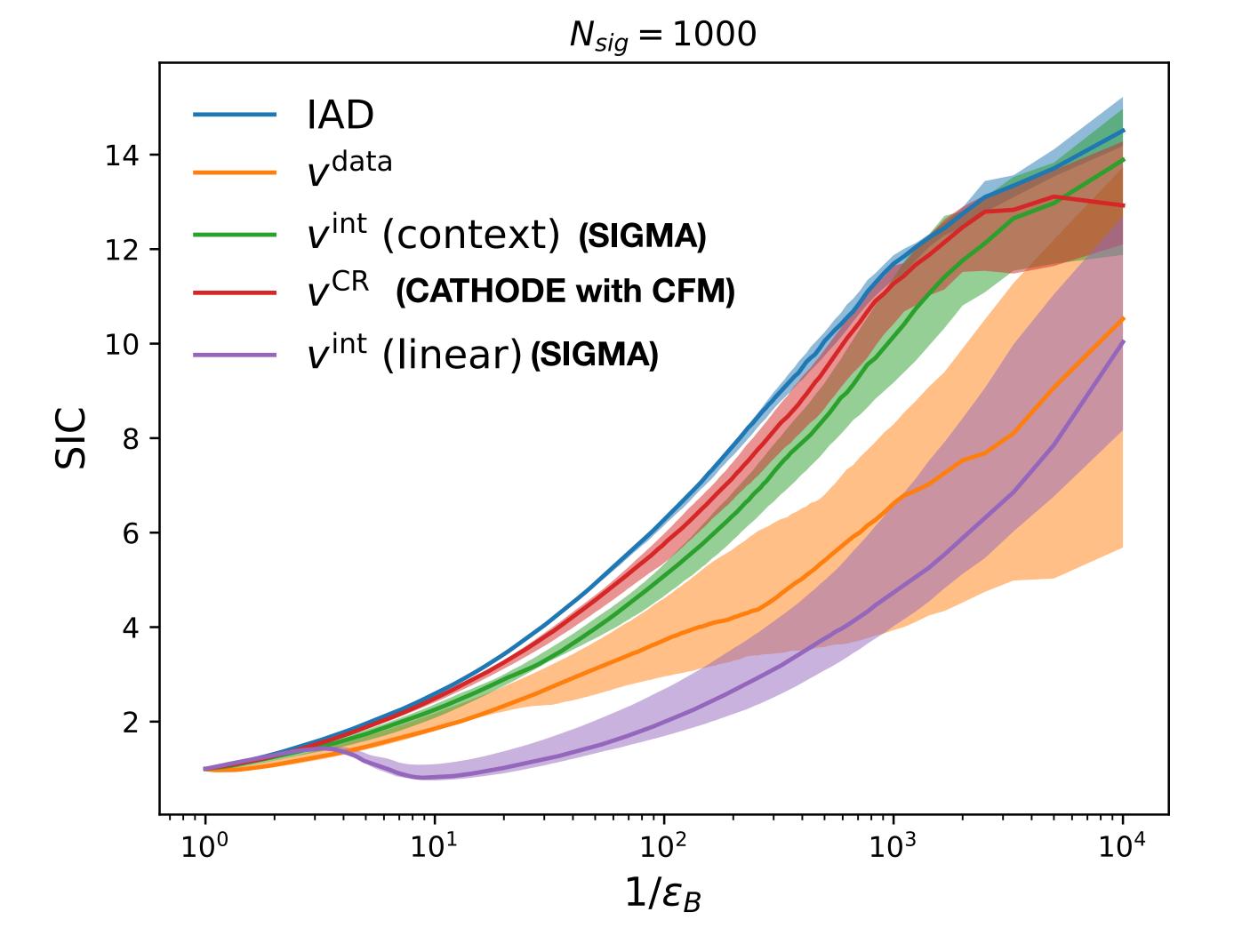
Anomaly detection performance



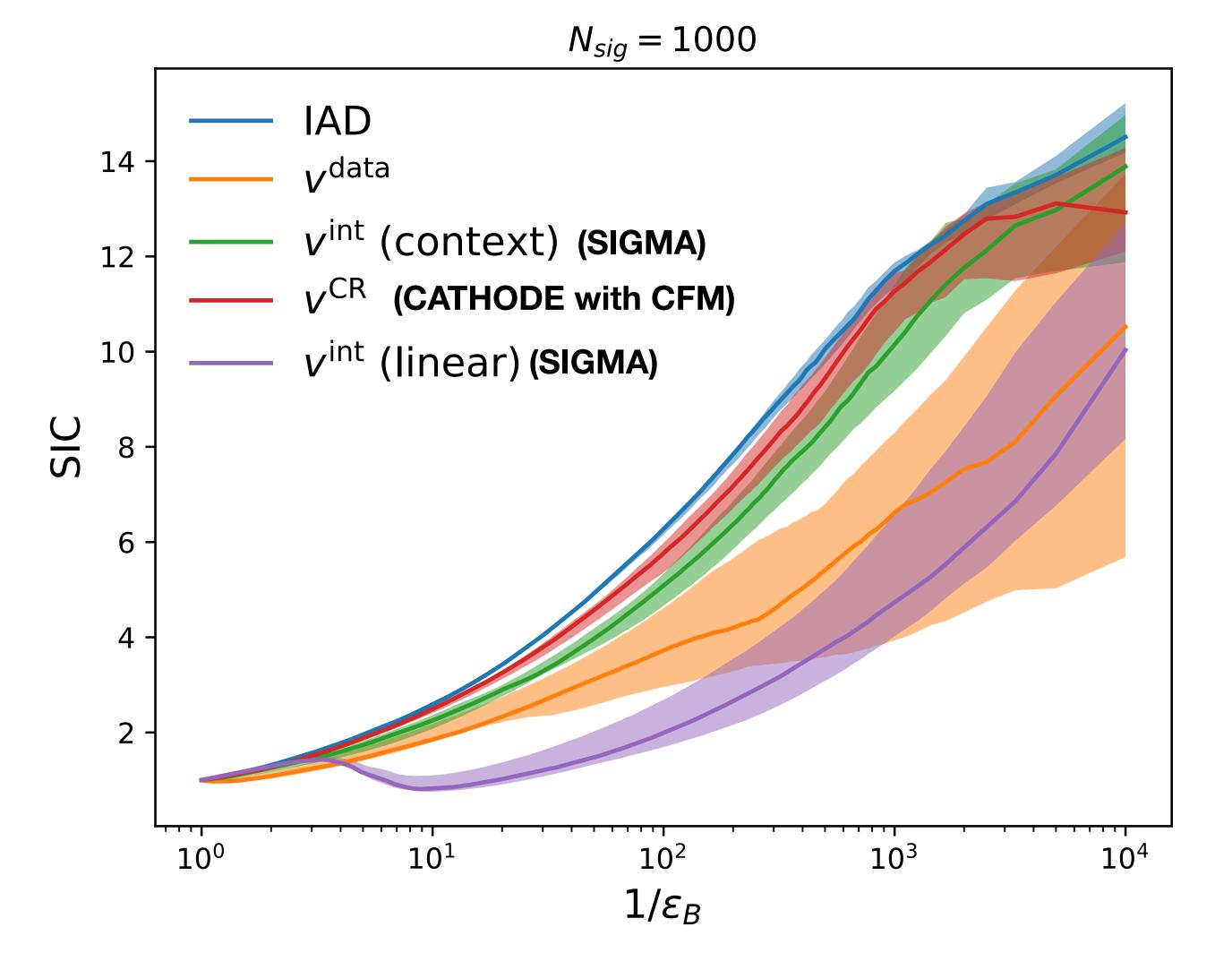
• v_{θ}^{data} has worse performance since it learns the signal.



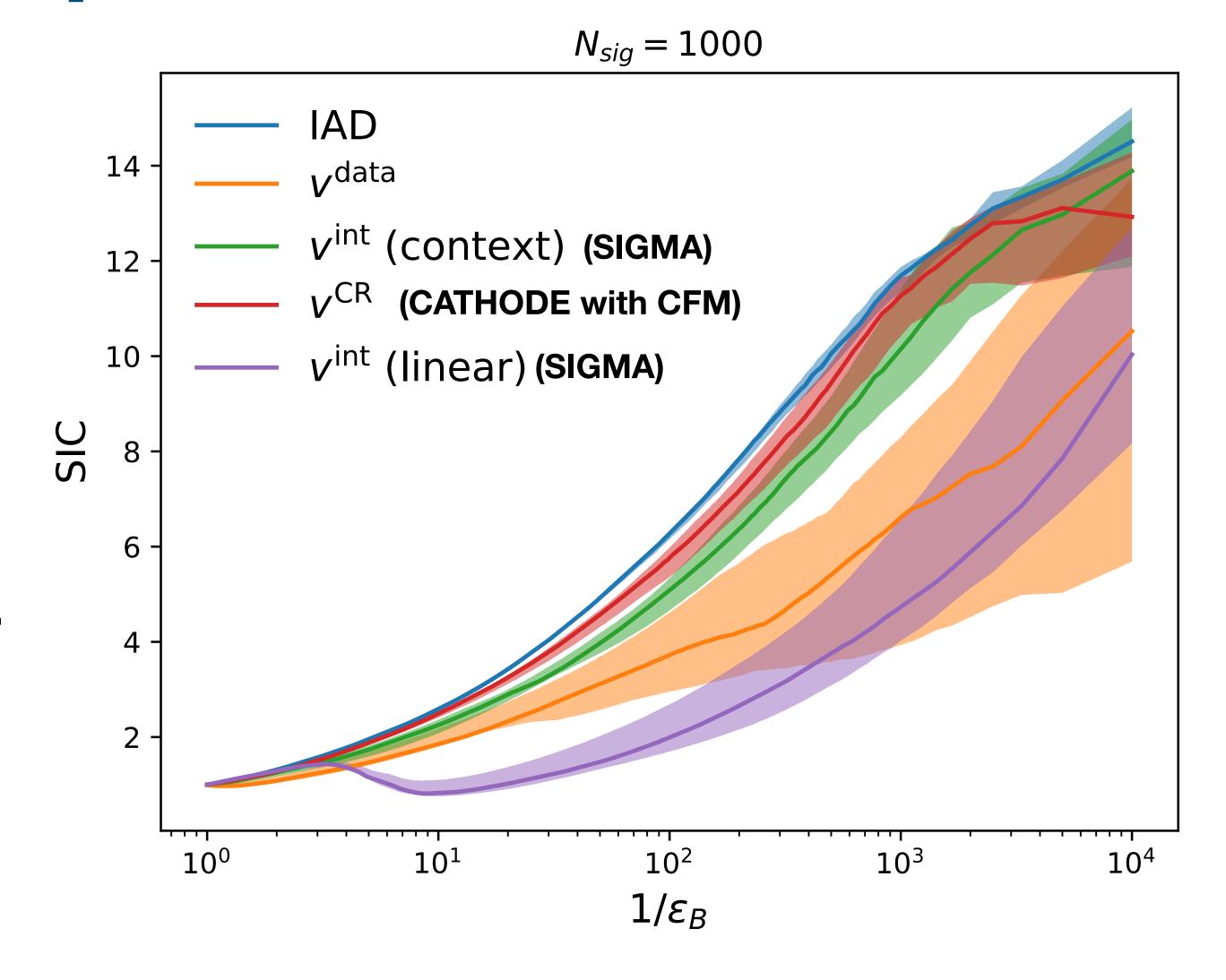
- v_{θ}^{data} has worse performance since it learns the signal.
- • v_{θ}^{CR} is slow but has the best performance.



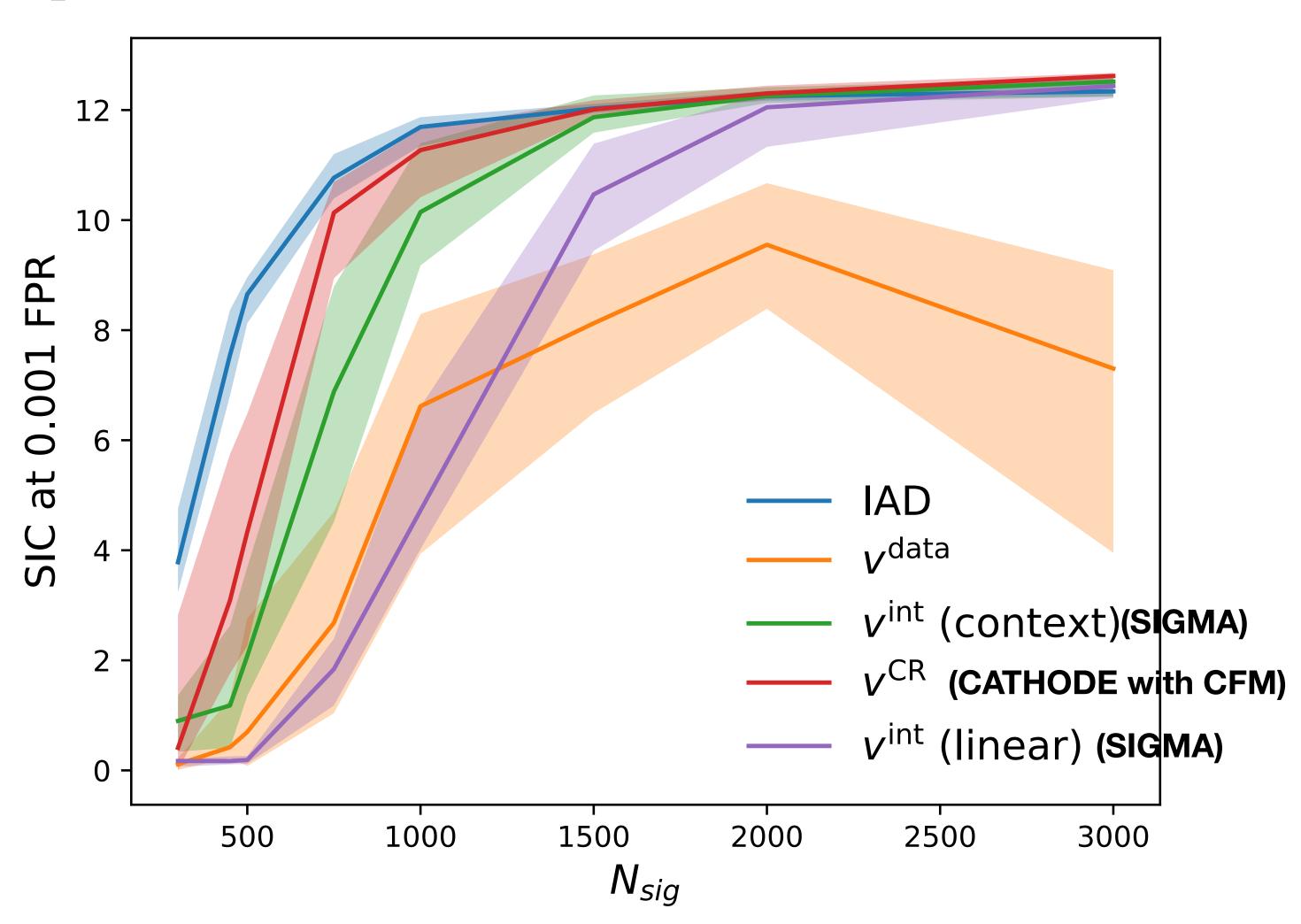
- v_{θ}^{data} has worse performance since it learns the signal.
- • v_{θ}^{CR} is slow but has the best performance.
- $v_{\theta}^{\rm int}$ (context) is much faster and has performance similar to $v_{\theta}^{\rm CR}$.



- v_{θ}^{data} has worse performance since it learns the signal.
- • v_{θ}^{CR} is slow but has the best performance.
- $v_{\theta}^{\rm int}$ (context) is much faster and has performance similar to $v_{\theta}^{\rm CR}$.
- v_{θ}^{int} (context) does better than v_{θ}^{int} (linear)



- v_{θ}^{data} has worse performance since it learns the signal.
- • v_{θ}^{CR} is slow but has the best performance.
- • $v_{\theta}^{\rm int}$ (context) is much faster and has performance similar to $v_{\theta}^{\rm CR}$.
- v_{θ}^{int} (context) does better than v_{θ}^{int} (linear)



Timing Comparison

Method	Generative Model	Timing
CATHODE/ANODE	Normalizing Flows	3 hours per SR
CATHODE/ANODE	Flow Matching	30 mins per SR
CURTAINS4F4	Normalizing Flows	3 hours (base model) + 7 mins per SR
RAD-OT	Optimal Transport	10 mins per SR
TRANSIT	No generative model	7 mins per SR
SIGMA (ours)	Flow Matching	30 mins (training) + 30 secs per SR

Summary

Summary

• SIGMA significantly reduces the computational cost relative to previous approaches such as CATHODE, CURTAINS, CURTAINS4F4.

Summary

- SIGMA significantly reduces the computational cost relative to previous approaches such as CATHODE, CURTAINS, CURTAINS4F4.
- Preserves high quality background templates and signal sensitivity

THANKYOU

Backup slides

Timing Comparison

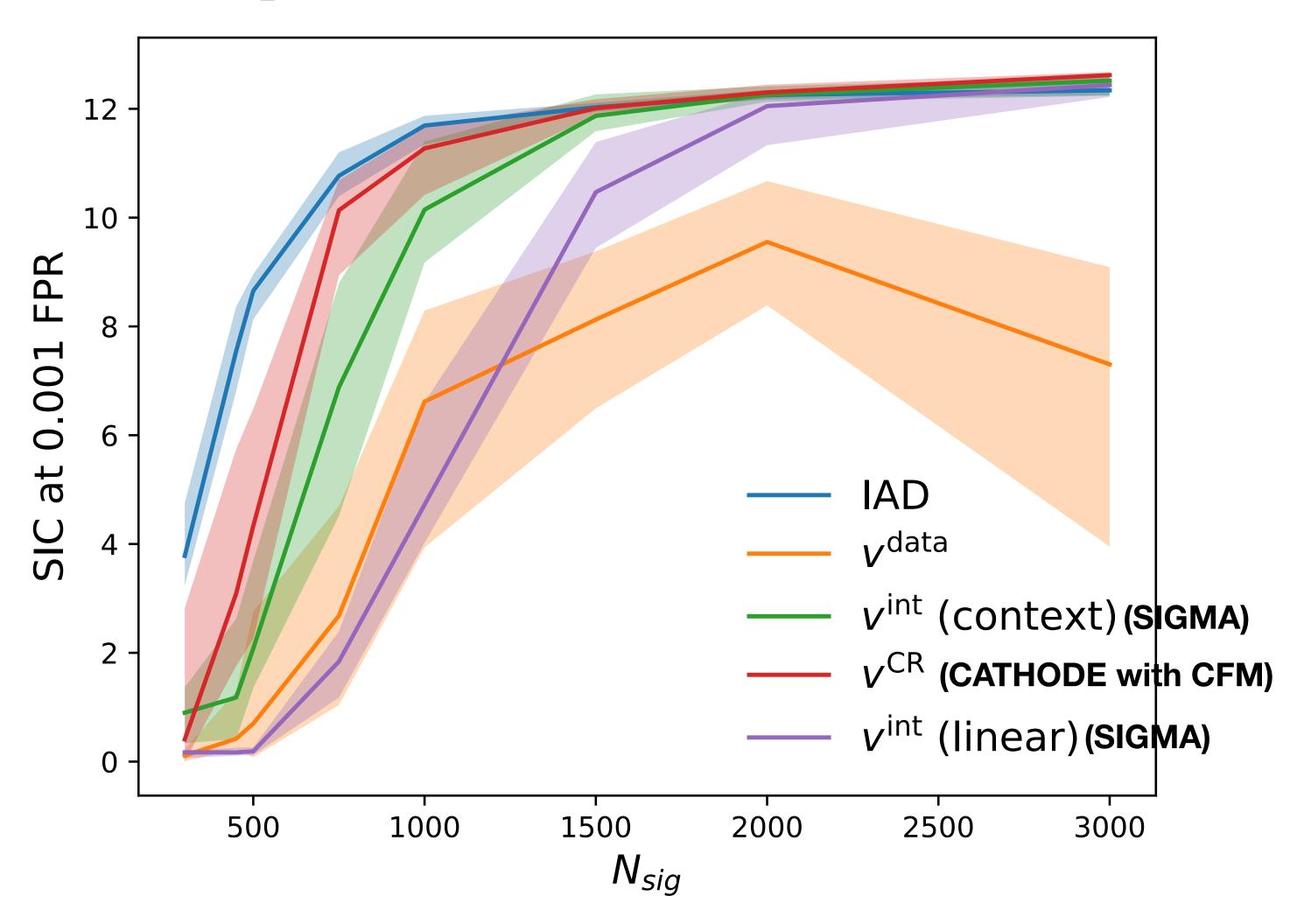
Method	Generative Model	Timing
CATHODE/ANODE	Normalizing Flows	3 hours per SR
CATHODE/ANODE	Flow Matching	30 mins per SR
SIGMA (ours)	Flow Matching	30 mins (training) + 30 secs per SR

How to select best interpolated model?

How to select best interpolated model?

Open question!

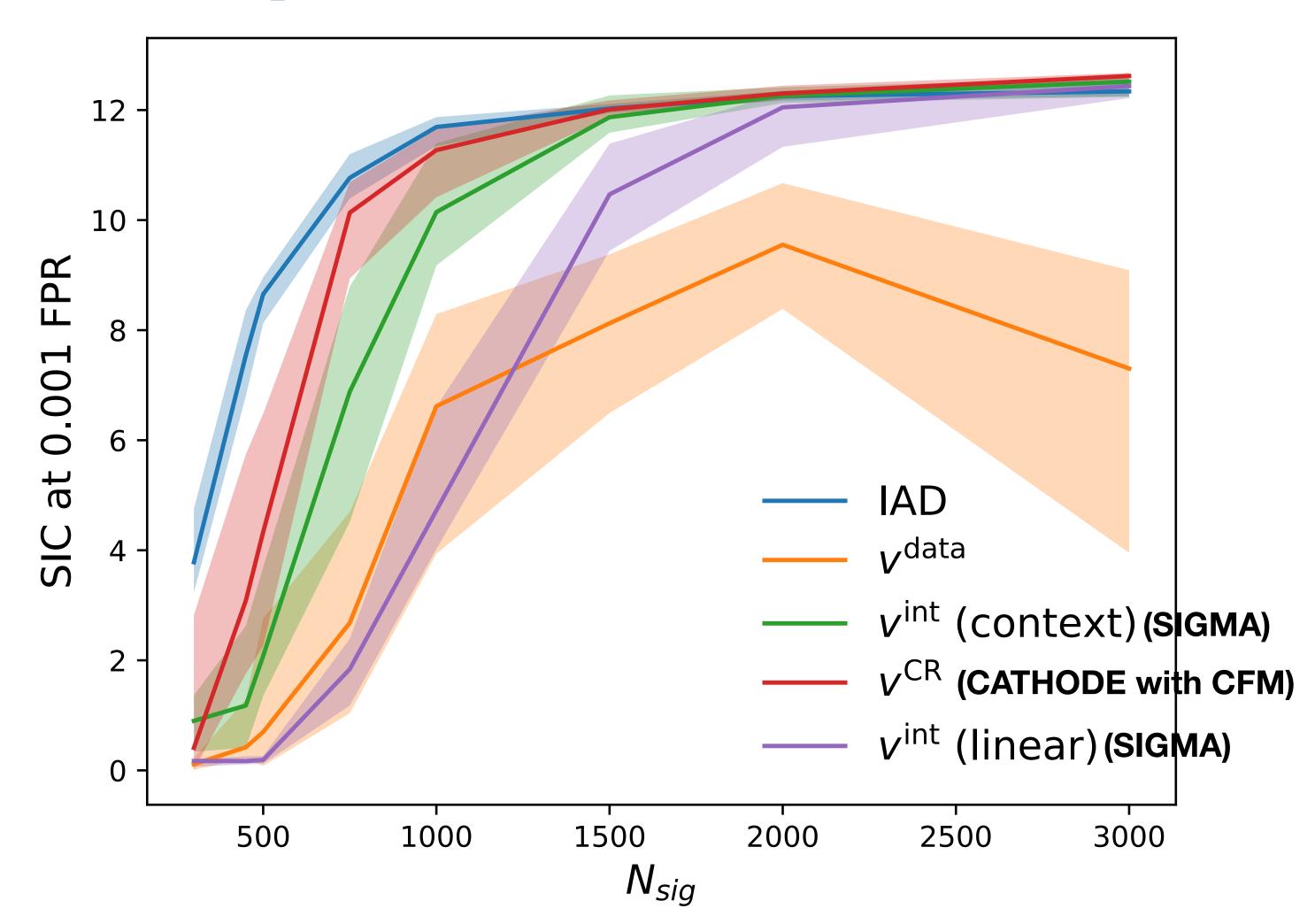
• The SIC is very sensitive to bad background templates.



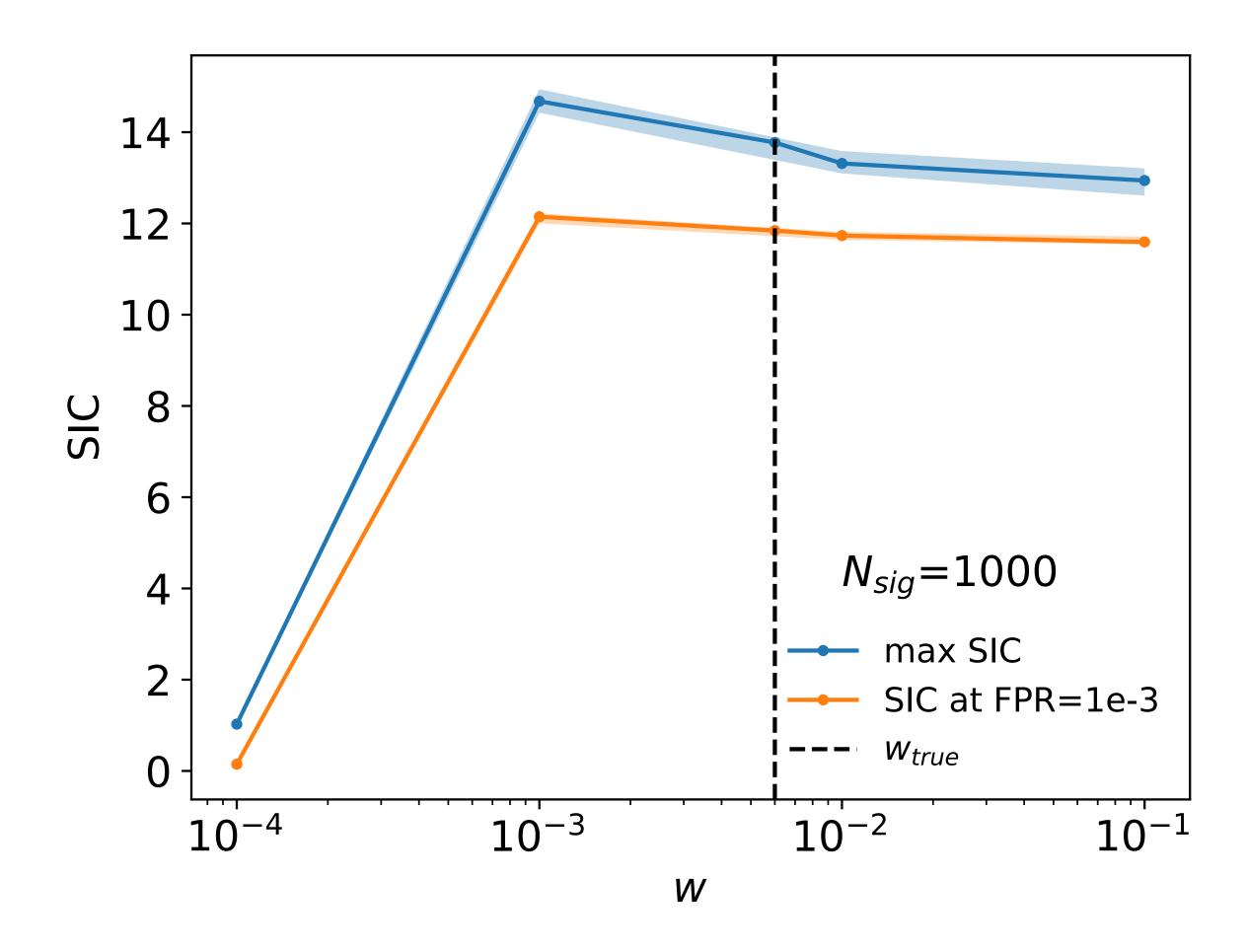
How to select best interpolated model?

Open question!

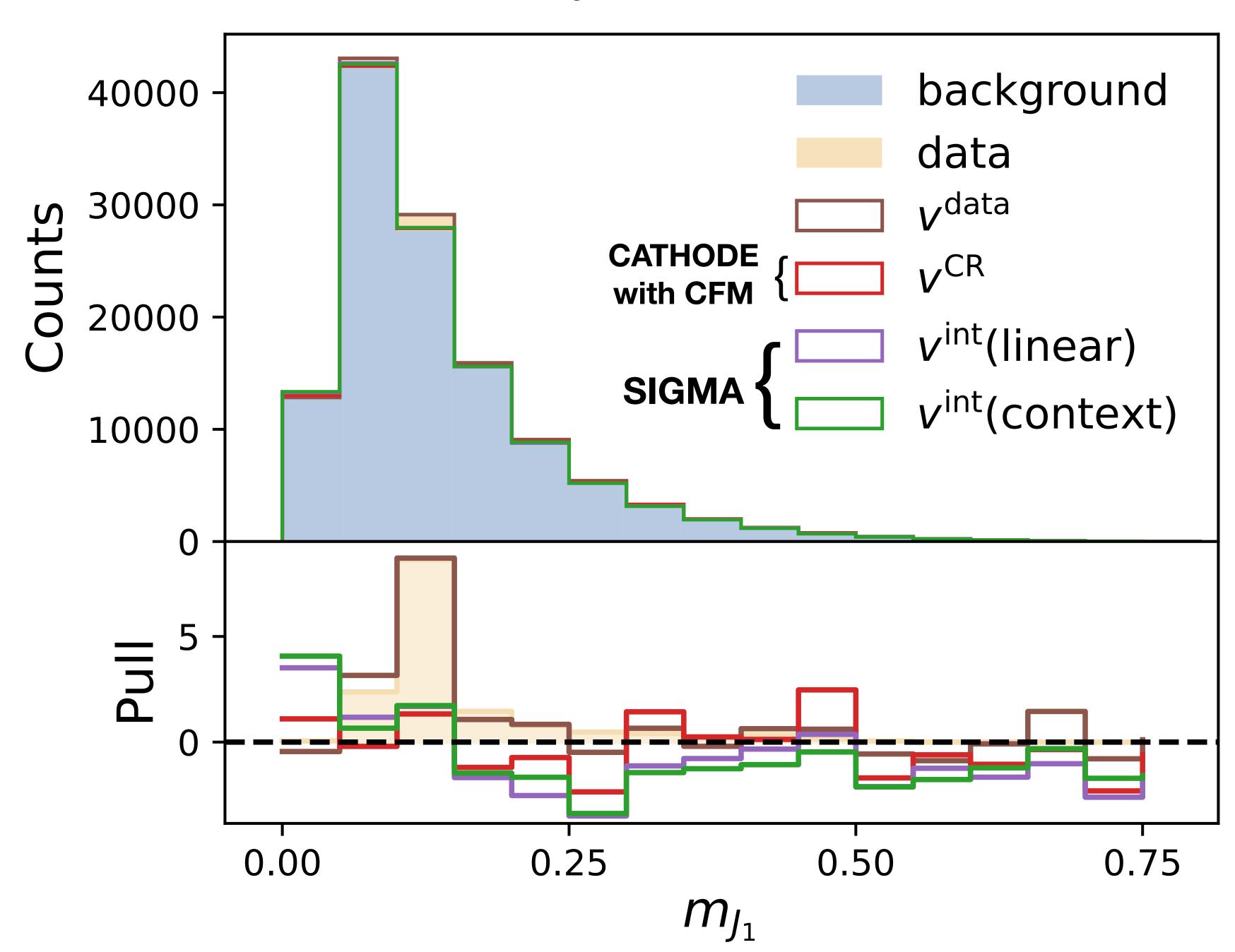
- The SIC is very sensitive to bad background templates.
- •We suggest doing signal injection tests, similar to CMS or ATLAS, or adding artificial gaussian signals to find the best interpolation.



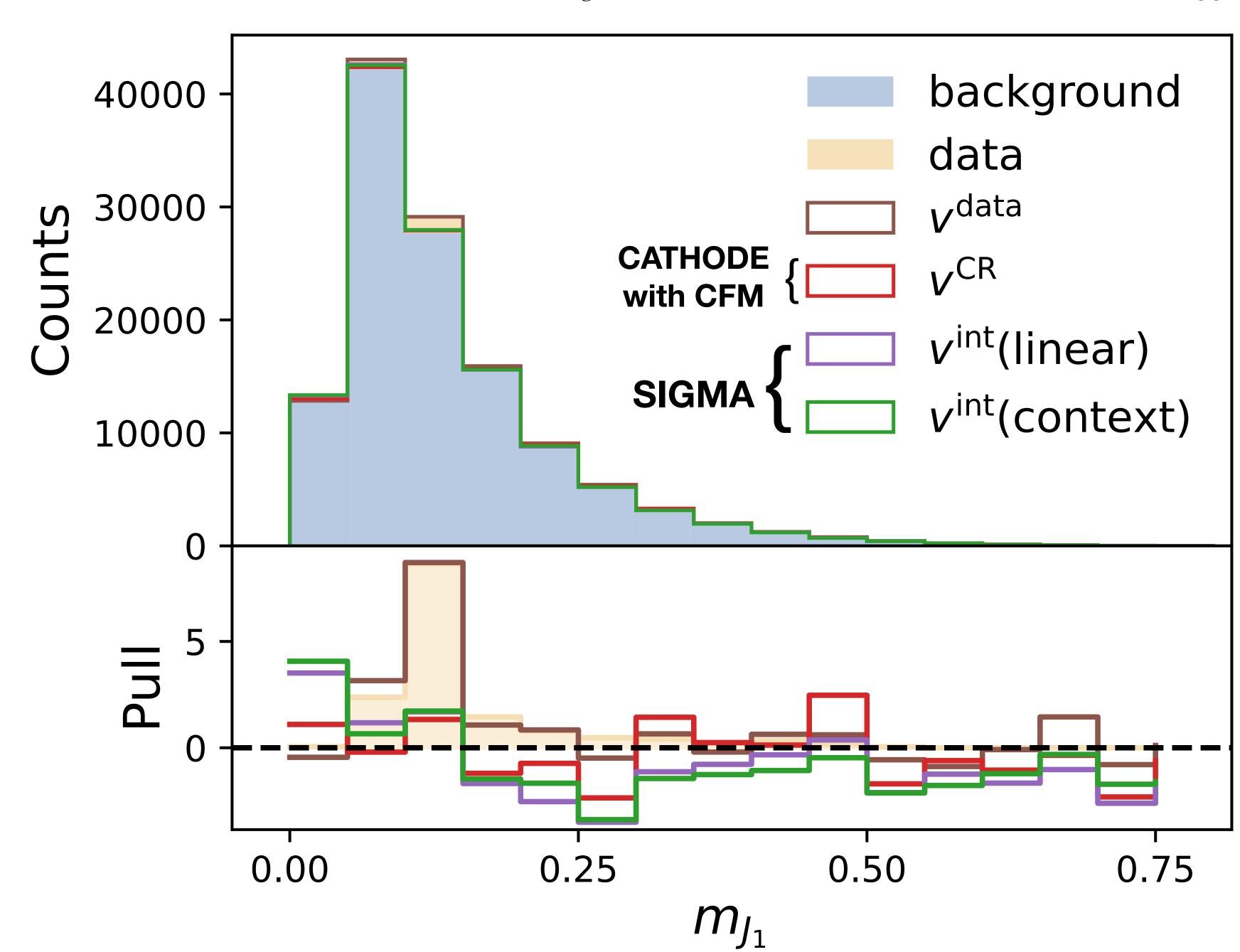
Scanning over w



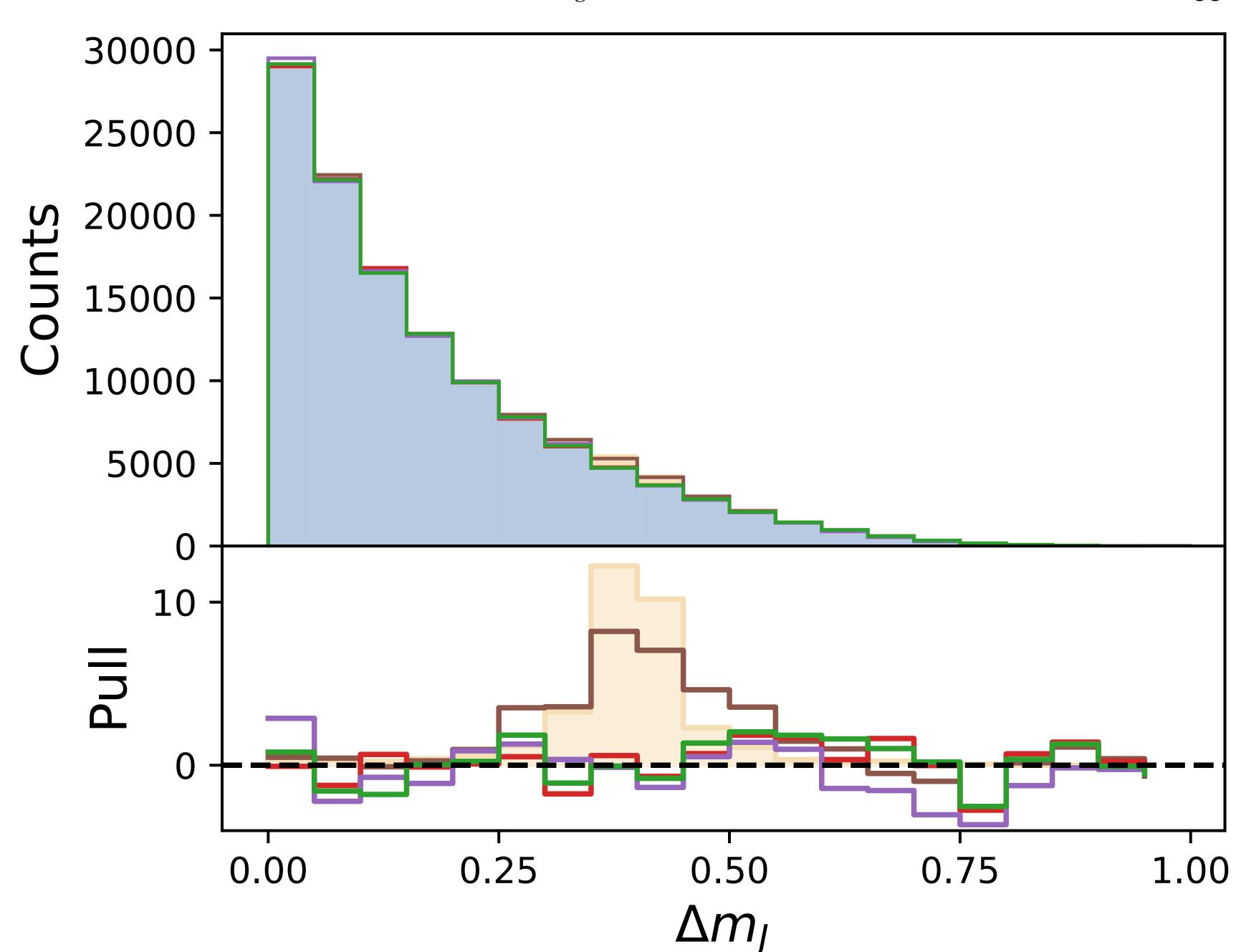
SIC is robust to incorrect choice of w, and could be used to put a lower bound on w



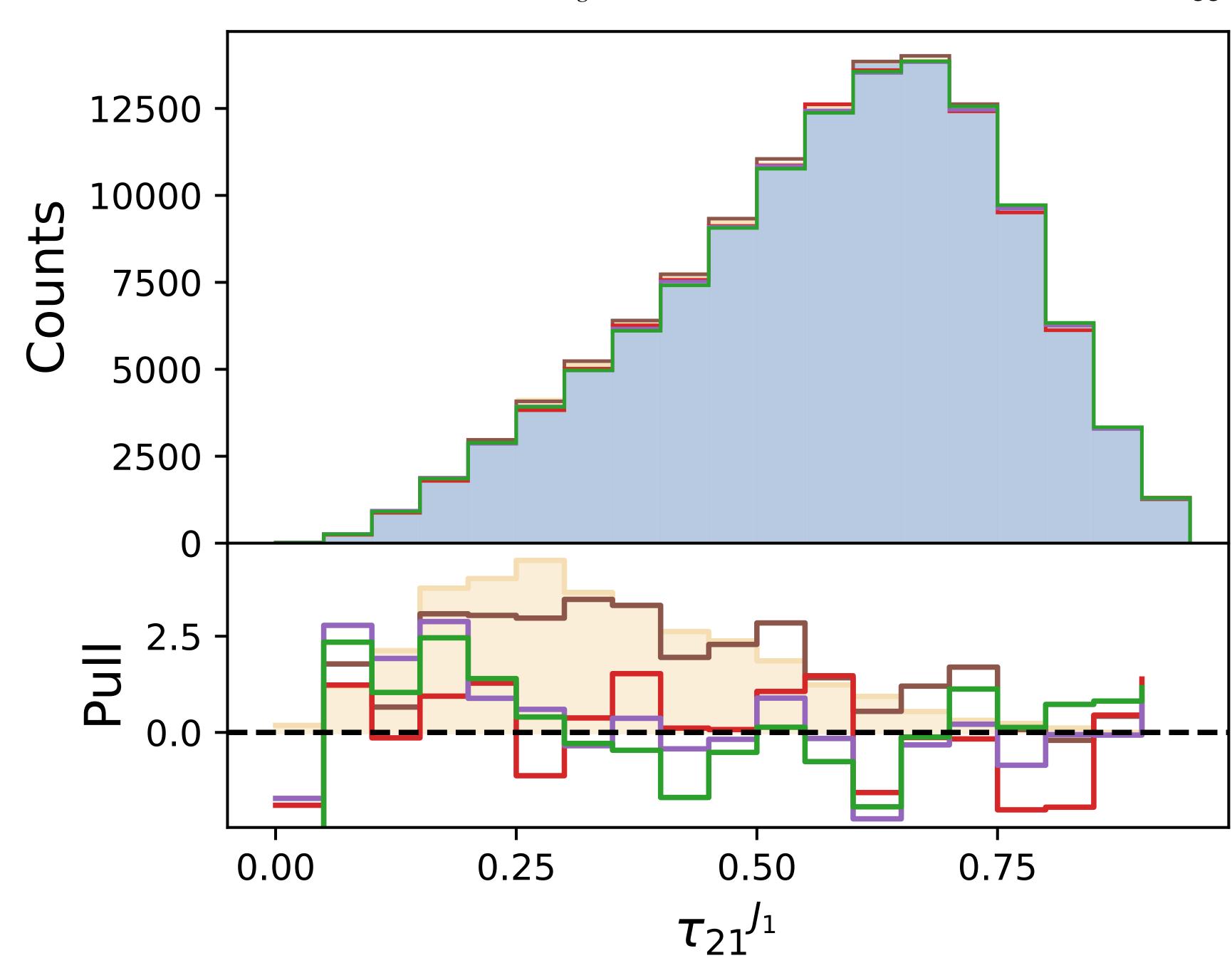
- The model trained on data, $v_{\theta}^{\rm data}$ learns the signal.
- The previous interpolation method v_{θ}^{CR} and the new interpolation methods v_{θ}^{int} (linear) and v_{θ}^{int} (context) are able to remove the signal



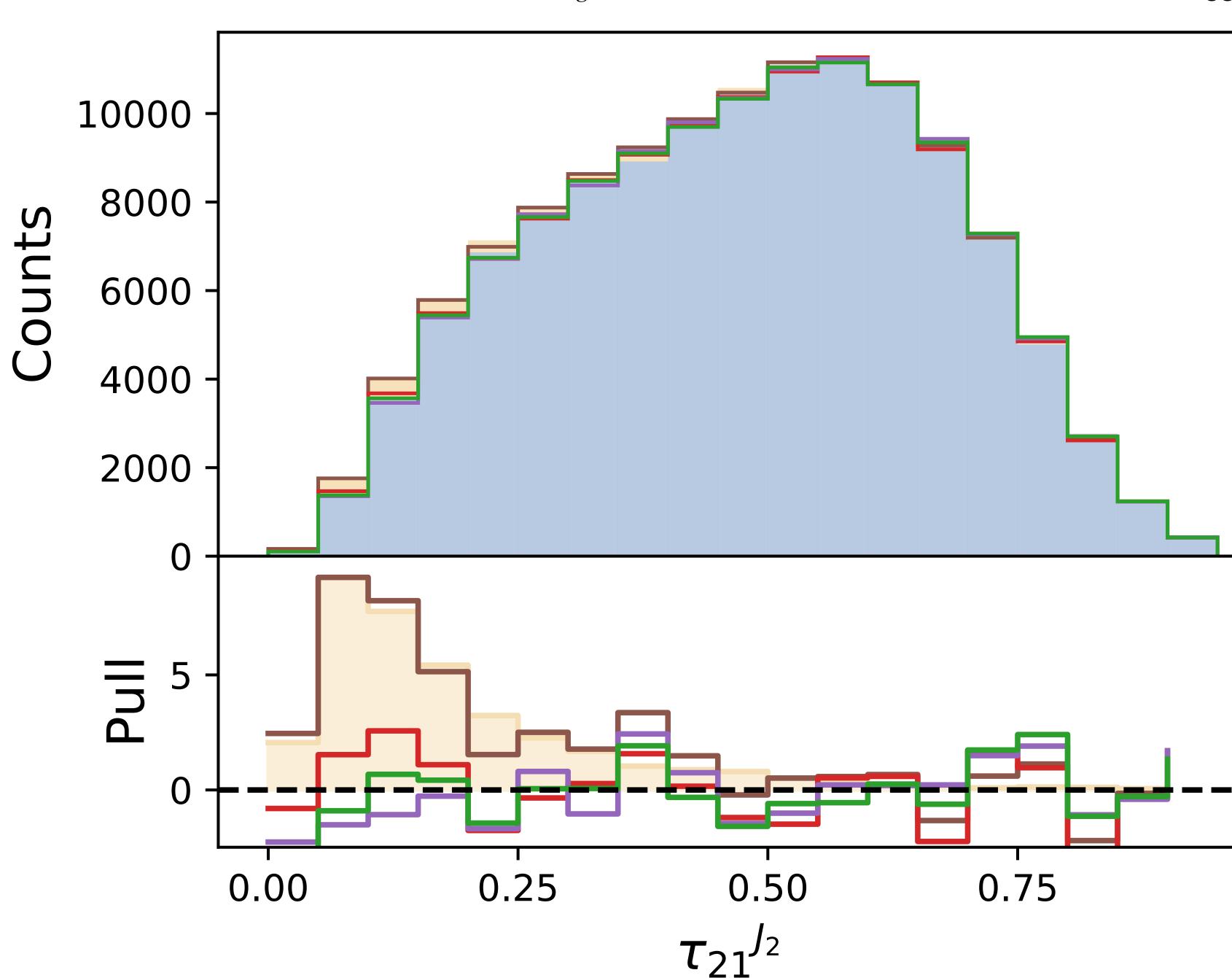
- The model trained on data, $v_{\theta}^{\rm data}$ learns the signal.
- •The previous interpolation method v_{θ}^{CR} and the new interpolation methods v_{θ}^{int} (linear) and v_{θ}^{int} (context) are able to remove the signal



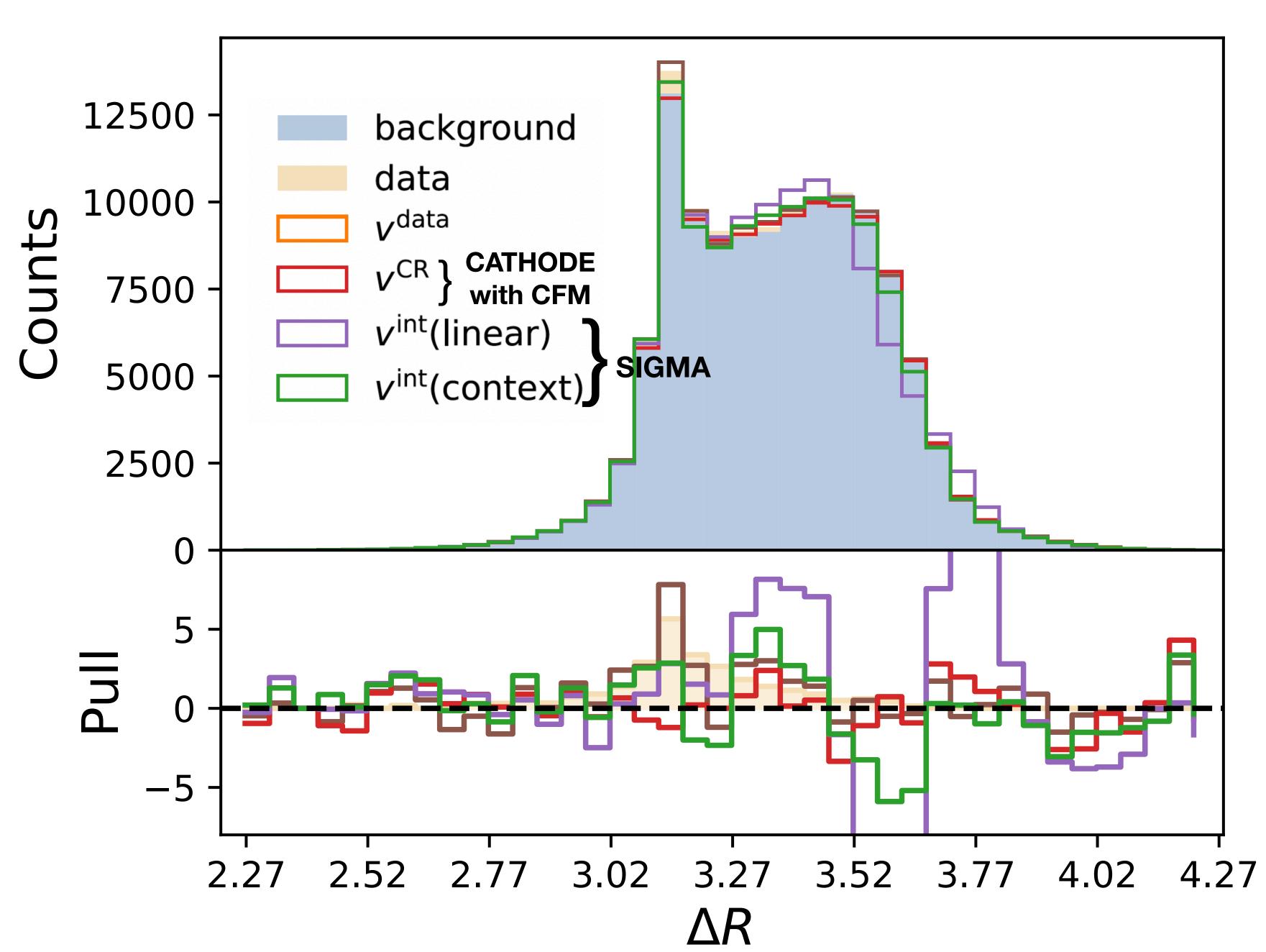
- The model trained on data, $v_{\theta}^{\rm data}$ learns the signal.
- •The previous interpolation method v_{θ}^{CR} and the new interpolation methods v_{θ}^{int} (linear) and v_{θ}^{int} (context) are able to remove the signal

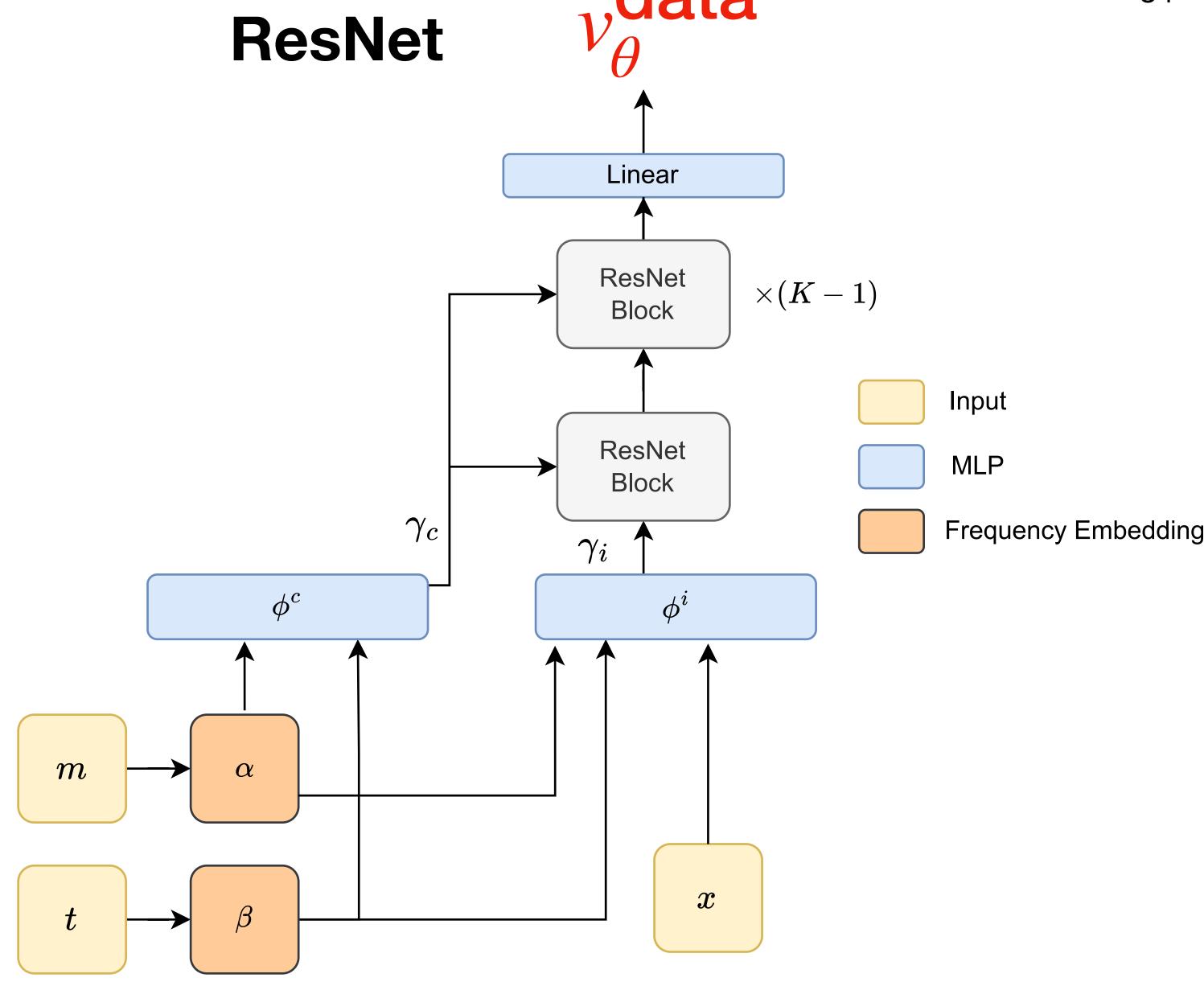


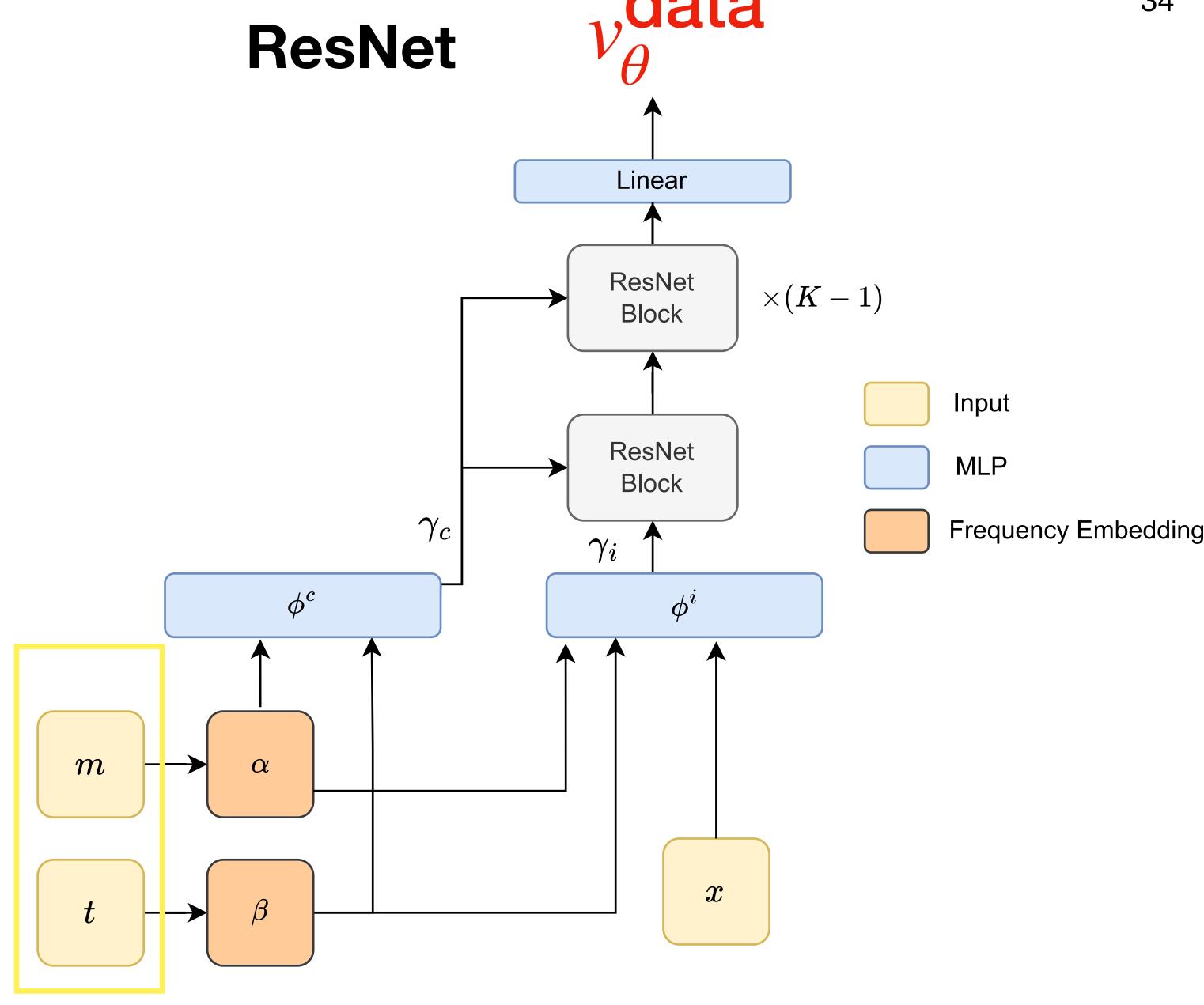
- The model trained on data, $v_{\theta}^{\rm data}$ learns the signal.
- The previous interpolation method v_{θ}^{CR} and the new interpolation methods v_{θ}^{int} (linear) and v_{θ}^{int} (context) are able to remove the signal



- ΔR is strongly correlated with m.
- $v_{\theta}^{\rm int}$ (context) learns this better than $v_{\theta}^{\rm int}$ (linear).





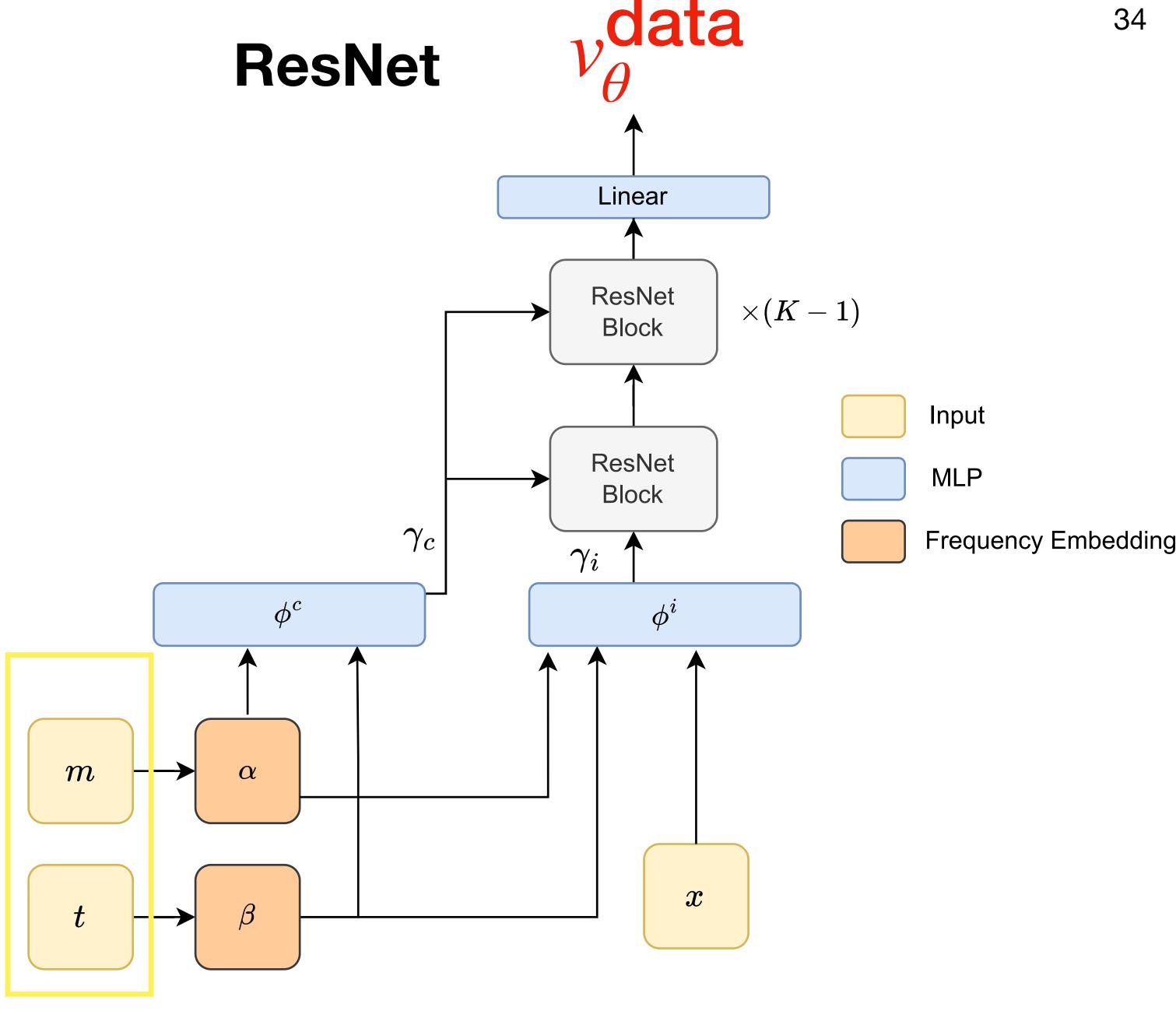


Conditional features

To learn the full data distribution optimally, including the more localized, higher frequency modes corresponding to signal, we found that a frequency embedding for *m* was beneficial.

$$\alpha(m) = \left(\sin(2^{0}\pi m), \cos(2^{0}\pi m), \dots, \sin(2^{L-1}\pi m), \cos(2^{L-1}\pi m)\right)$$

$$\beta(t) = \left(\sin(\pi t), \cos(\pi t), \dots, \\ \sin((L'+1)\pi t), \cos((L'+1)\pi t)\right)$$



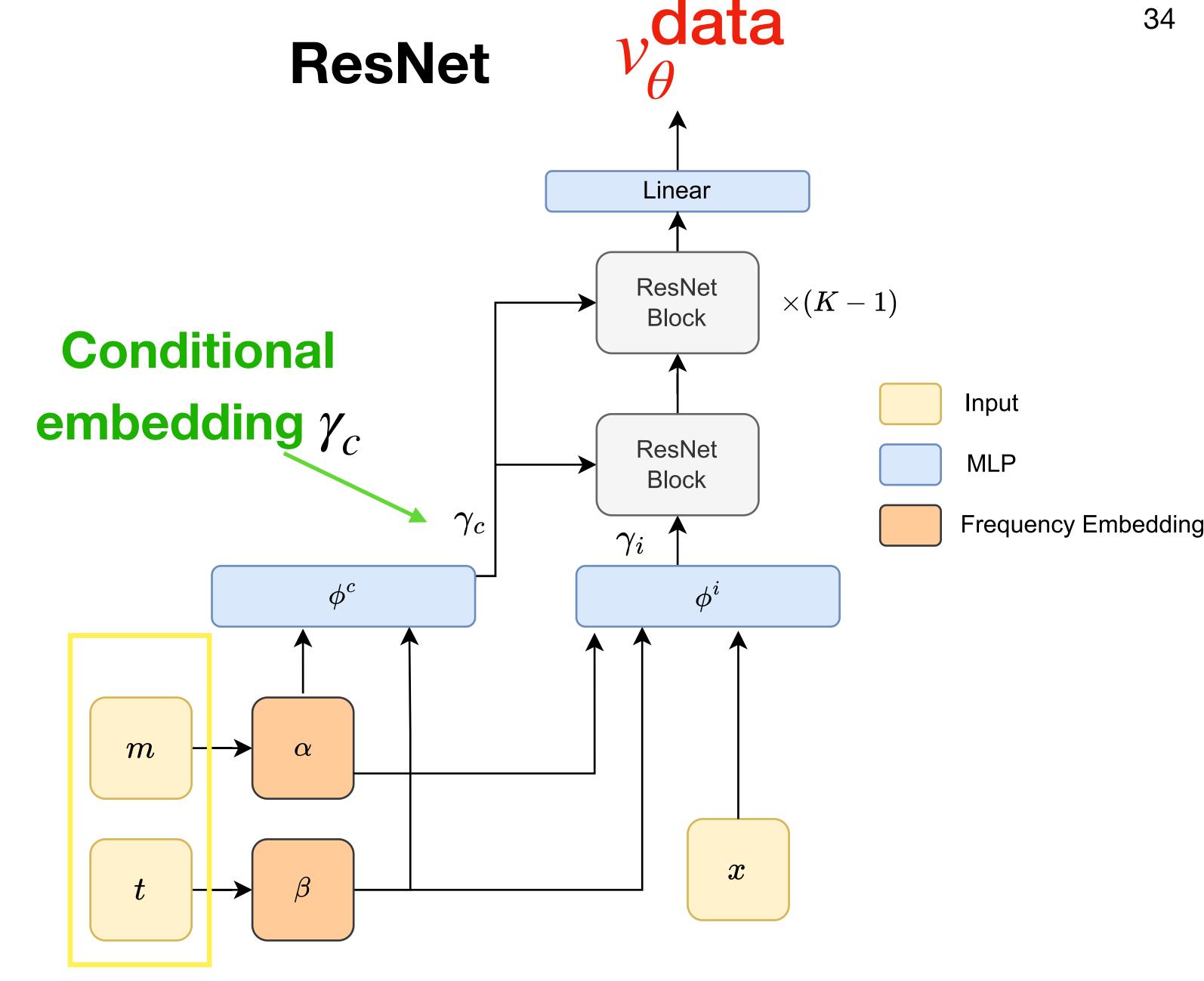
Conditional features

NERF: <u>arXiv:2003.08934</u>

To learn the full data distribution optimally, including the more localized, higher frequency modes corresponding to signal, we found that a frequency embedding for *m* was beneficial.

$$\alpha(m) = \left(\sin(2^{0}\pi m), \cos(2^{0}\pi m), \dots, \sin(2^{L-1}\pi m), \cos(2^{L-1}\pi m)\right)$$

$$\beta(t) = \left(\sin(\pi t), \cos(\pi t), \dots, \\ \sin((L'+1)\pi t), \cos((L'+1)\pi t)\right)$$



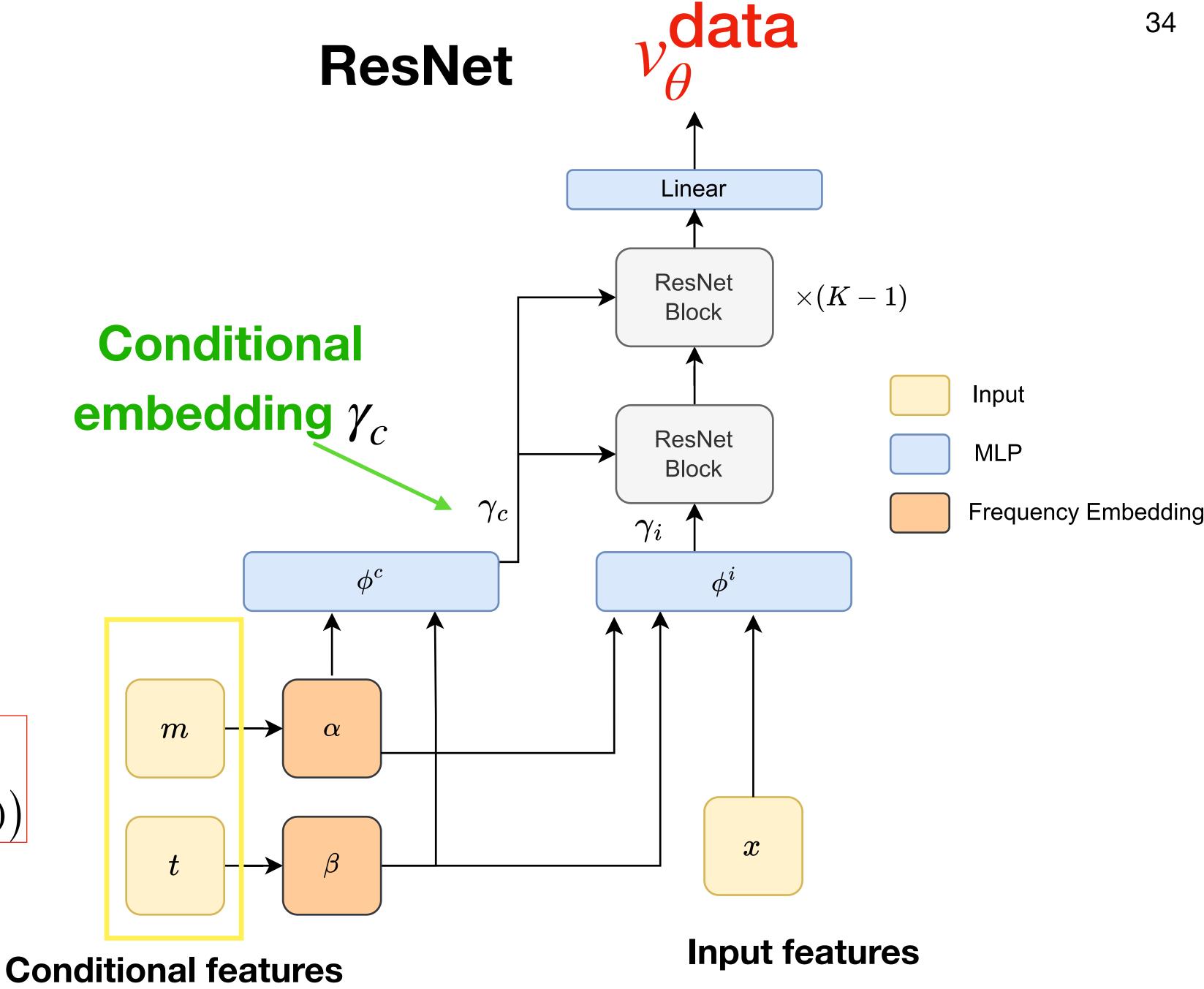
Conditional features

NERF: arXiv:2003.08934

To learn the full data distribution optimally, including the more localized, higher frequency modes corresponding to signal, we found that a frequency embedding for *m* was beneficial.

$$\alpha(m) = \left(\sin(2^{0}\pi m), \cos(2^{0}\pi m), ..., \\ \sin(2^{L-1}\pi m), \cos(2^{L-1}\pi m)\right)$$

$$\beta(t) = \left(\sin(\pi t), \cos(\pi t), \dots, \\ \sin((L'+1)\pi t), \cos((L'+1)\pi t)\right)$$

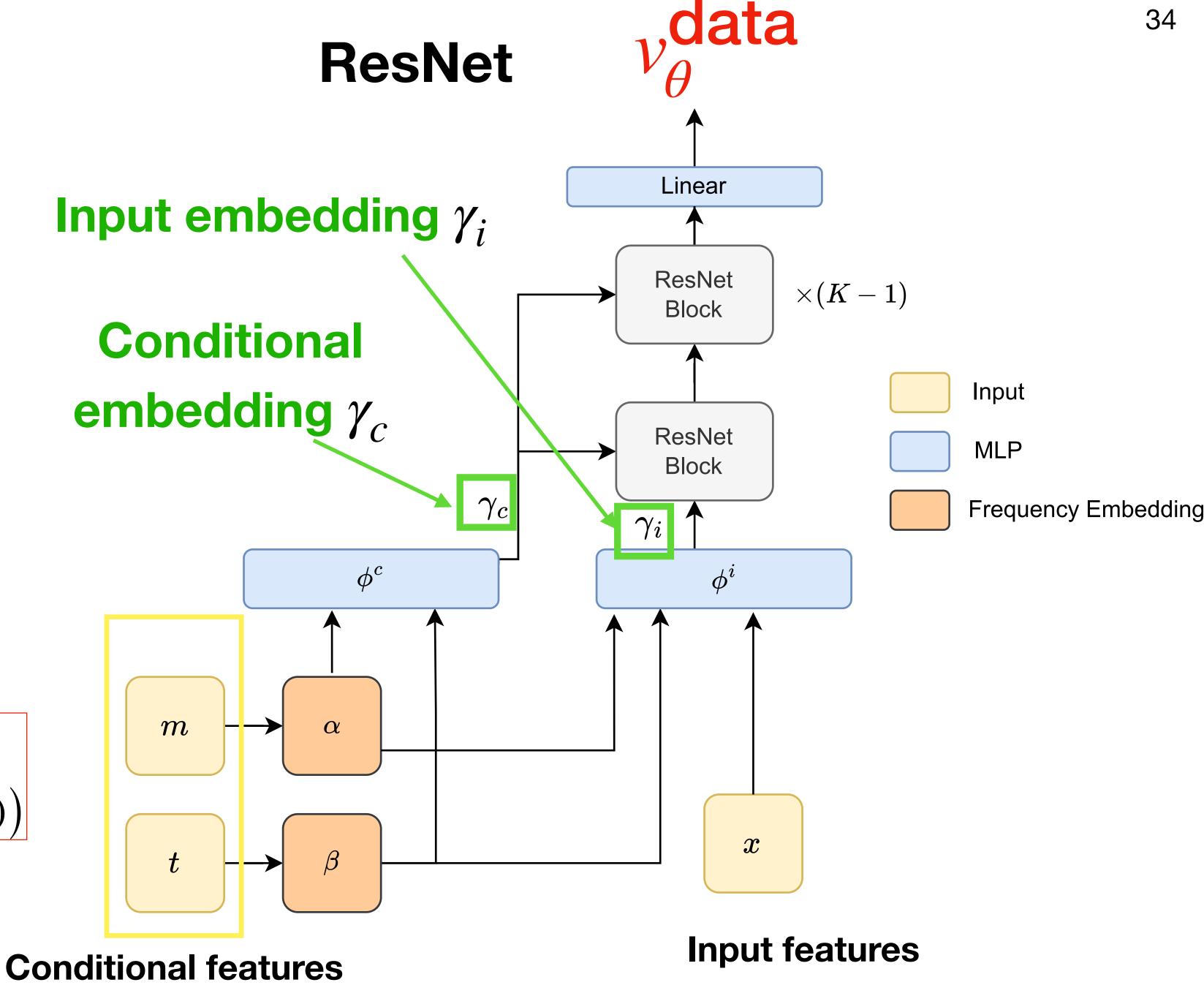


NERF: <u>arXiv:2003.08934</u>

To learn the full data distribution optimally, including the more localized, higher frequency modes corresponding to signal, we found that a frequency embedding for *m* was beneficial.

$$\alpha(m) = \left(\sin(2^{0}\pi m), \cos(2^{0}\pi m), \dots, \sin(2^{L-1}\pi m), \cos(2^{L-1}\pi m)\right)$$

$$\beta(t) = \left(\sin(\pi t), \cos(\pi t), \dots, \\ \sin((L'+1)\pi t), \cos((L'+1)\pi t)\right)$$



NERF: <u>arXiv:2003.08934</u>