

CLUSTER OF EXCELLENCE

Anomaly detection interpretability and phenomenology

Universal new physics latent space

Based on <u>2407.20315</u>

Anna Hallin, G. Kasieczka, S. Kraml, A. Lessa, L. Moureaux, T. von Schwartz, D. Shih <u>anna.hallin@uni-hamburg.de</u>

Anomaly Detection for High Energy Physics (AD4HEP) Workshop, Columbia University, June 17, 2025

CLUSTER OF EXCELLENCE

Ппп

Anomaly detection interpretability and phenomenology

Universal new physics latent space

Based on 2407.20315

Anna Hallin, G. Kasieczka, S. Kraml, A. Lessa, L. Moureaux, Tore von Schwartz, D. Shih <u>anna.hallin@uni-hamburg.de</u>

Anomaly Detection for High Energy Physics (AD4HEP) Workshop, Columbia University, June 17, 2025

... or very broad searches

Universität Hamburg

where B and C are τ leptons [9,10], b guarks [11-13], top of existing and proposed model-agnostic searches range

Interpretability

- By design, specific searches focus on small regions of model space
 - If we find something, great!
 - If we don't find anything, how can we use that result in the context of other models?
- Also by design, model-agnostic searches focuses on wide swaths of model space
 - If we find something, great!
 - ...but what is it that we have found?

Grouping models according to their phenomenology

- What if there was a way to figure out which models "belong together", phenomenologically?
 - Results of very specific searches could be easier to interpret in the context of other models
 - Further interpretation of results from model-agnostic searches could be made easier
 - Potential blind spots in our search strategies could be identified

Universal new physics latent space

- Idea: use machine learning to embed the phenomenology of different models into a universal latent space
- The distance between the models in this latent space will indicate how close they are to one another, phenomenologically

Model architecture: simple encoder

Fully connected MLP with ReLu activations

Contrastive loss function

where

Y = 0 for points from different models

Parameter for unbounded latent spaces; we set d = 1

$$L(\theta, (Y_{ij}, \vec{X}_i, \vec{X}_j)) = (1 - Y_{ij})\frac{1}{2}D_{\theta}^2 + Y_{ij}\frac{1}{2}\left(\max\left(0, d - D_{\theta}\right)\right)^2$$

The loss function is **minimized** when **points from the same model are close together** in the latent space, and **points from different models are far apart**. Since their phase spaces overlap, they cannot be collapsed to single points but must overlap in the latent space.

 $D_{\theta} \equiv D_{\theta}(\vec{X}_i, \vec{X}_j)$ Euclidian distance in latent space

Dataset 1: MSSM gluino simplified model

- Pair production of gluinos, each gluino decays to a neutralino and a quark-antiquark pair
- Signal: four hard jets and large missing energy (MET)
- Nine mass combinations: $m_{gluino} = 1.1, 1.6, 2.1 \text{ TeV}; m_{neutralino} = 0.1, 0.5, 0.9 \text{ TeV}$

• Features used for training: p_T , m, η , $\Delta \phi$ (jet, MET) of the first four jets, MET, and the invariant masses of all possible jet pairs

Observations:

- Large mass difference Δm between gluino and neutralino → harder jet and MET spectrum
- Models with similar Δm have similar spectra

Dataset 1 results

- The model has organized the models in latent space given the mass difference (labeled) between gluino and neutralino
- Agrees with observation about this correlation from the feature plots
- Orthogonal diagonal shows a slight sorting of the models according to the gluino mass, nontrivial as the signal features only depend weakly on this

Dataset 2: Dark matter simplified model

- Dark matter production at the LHC, with one jet and missing energy
 - Vector mediator
 - Pseudoscalar mediator
 - Squark mediator
- $m_{DM} = 100-900 \text{ GeV}$, in steps of 100 GeV; $M_{med} = 600-2000 \text{ GeV}$, in steps of 200 GeV
- Features used for training: p_T , η , $\Delta \phi$ (jet, MET), MET, and the mass of the leading two jets

Z'

g more t

g 2000

g unue

Observations for $m_{DM} = 100$ GeV:

- MET in vector and pseudoscalar case only weakly depends on the mediator mass
- In the squark case, the MET has a stronger correlation with the mediator mass

Dataset 2 results

- Separate embeddings
 - Not much dependence on mediator mass in vector and pseudoscalar case
 - Squark case shows dependence on mediator mass

Colorful contours: m_{DM} = 100 GeV; grey contours: all other masses

Dataset 2 results

- Separate embeddings
 - Not much dependence on mediator mass in vector and pseudoscalar case
 - Squark case shows dependence on mediator mass
- Pair embeddings
 - Vector and pseudoscalar overlap
 - Squark case has distinct arrangement
- Embedding of all three
 - Vector and pseudoscalar still overlap
 - Squark case keeps its distinct behavior

Colorful contours: m_{DM} = 100 GeV; grey contours: all other masses

Dataset 3: Dark machines subset

- A selection of models from the Dark machines anomaly challenge dataset (Dark Machines community 2020, Aarrestad et al 2022)
 - Scenarios resulting in jets + MET
 - SM background
- Features used for training: E, p_T, η, ϕ of the first four jets, MET of the event

BSM scenario	Physical process and model parameters
DM Vector Mediator	$pp \rightarrow Z' \rightarrow \chi \chi$ • $m_{Z'} = 2 \text{ TeV}, m_{\text{DM}} = 50 \text{ GeV}$
Gluino Simplified Models	$\begin{array}{l} pp \rightarrow \tilde{g}\tilde{g},\tilde{g} \rightarrow qq + \tilde{\chi}_1^0 \\ \bullet m_{\tilde{g}} = 1.4 \text{ TeV},m_{\chi^0} = 1.1 \text{ TeV} \\ \bullet m_{\tilde{g}} = 1.6 \text{ TeV},m_{\chi^0} = 0.8 \text{ TeV} \end{array}$
Stop Simplified Model	$\begin{array}{l} pp \rightarrow \tilde{t}\tilde{t}, \tilde{t} \rightarrow t + \tilde{\chi}_1^0 \\ \bullet m_{\tilde{t}} = 1 \mathrm{TeV}, m_{\chi^0} = 0.3 \mathrm{TeV} \end{array}$
Squark Simplified Model	$pp \rightarrow \tilde{q} \tilde{q}, \tilde{q} \rightarrow q + \tilde{\chi}_1^0$ • $m_{\tilde{q}} = 1.8 \text{ TeV}, m_{\chi^0} = 0.8 \text{ TeV}$

Observations:

- Squark model has the highest $\Delta m \rightarrow$ hard MET and p_T spectra
- Heavy gluino model has 4 hard jets \rightarrow high p_T of the third jet compared to other models
- Light gluino model has smallest $\Delta m \rightarrow$ soft spectra
- Z' model: jets come from ISR, not dependent on its high Δm

Dataset 3 results

- The latent space is organized along two main axes:
 - MET
 - p_T of the third jet
- Light gluino, Z' and stop models are clustered together, as expected from ISR and soft spectrum of light gluino; light gluino has softer MET, putting it higher in latent dim 2
- Heavy gluino: high p_T of the third jet, intermediate MET
- Squark: highest MET, also hard p_T spectra
- SM background: softest spectra overall

Conclusions

- We developed a machine learning model capable of clustering different BSM scenarios in a latent space according to their phenomenology
- When analyzing the arrangement in latent space, it was obvious that the model had found relevant axes
 - By analyzing such latent spaces, representative models that cover a certain area of the latent space can be selected as benchmarks for searches
 - Correlations between latent space axes and feature space can be used to identify observables suitable for distinguishing different models
 - Regions not covered in latent space could indicate gaps that need to be filled
- Future work: include cross section; explore more expressive architectures...

