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The BSM zoo and their multitude of different signatures
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Very specific searches...

Model
# 53
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...or very broad searches

”Something 
anomalous”



▪ By design, specific searches focus on small regions of model space

▪ If we find something, great!

▪ If we don’t find anything, how can we use that result in the context of other 

models?

▪ Also by design, model-agnostic searches focuses on wide swaths of model space

▪ If we find something, great!

▪ ...but what is it that we have found?

Anna Hallin | Universal new physics latent space | June 17, 2025 6

Interpretability



▪ What if there was a way to figure out which models ”belong together”, 

phenomenologically?

▪ Results of very specific searches could be easier to interpret in the context of 

other models

▪ Further interpretation of results from model-agnostic searches could be made 

easier

▪ Potential blind spots in our search strategies could be identified
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Grouping models according to their phenomenology



▪ Idea: use machine learning to embed the phenomenology of different models into a 

universal latent space

▪ The distance between the models in this latent space will indicate how close they are to 

one another, phenomenologically
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Universal new physics latent space



Fully connected MLP with ReLu activations
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Model architecture: simple encoder
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where

The loss function is minimized when points from the same model are close together in the 

latent space, and points from different models are far apart. Since their phase spaces 

overlap, they cannot be collapsed to single points but must overlap in the latent space.
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Contrastive loss function

𝑋𝑖 and 𝑋𝑗 are concatenated sets of 10 events
Model weights

Euclidian distance
in latent space

Parameter for unbounded
latent spaces; we set 𝑑 = 1

Label 𝑌= 1 for points from the same model,
𝑌 = 0 for points from different models



▪ Pair production of gluinos, each gluino decays to a neutralino and a quark-antiquark pair

▪ Signal: four hard jets and large missing energy (MET)

▪ Nine mass combinations: 𝑚𝑔𝑙𝑢𝑖𝑛𝑜 = 1.1, 1.6, 2.1 TeV; 𝑚𝑛𝑒𝑢𝑡𝑟𝑎𝑙𝑖𝑛𝑜 = 0.1, 0.5, 0.9 TeV

▪ Features used for training: 𝑝𝑇 , 𝑚, 𝜂, Δ𝜙(jet, MET) of the first four jets, MET, and the 

invariant masses of all possible jet pairs
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Dataset 1: MSSM gluino simplified model

Observations:
• Large mass difference

Δ𝑚 between gluino and 
neutralino → harder jet 
and MET spectrum

• Models with similar Δ𝑚
have similar spectra



▪ The model has organized the models in latent space

given the mass difference (labeled) between gluino

and neutralino

▪ Agrees with observation about this correlation from

the feature plots

▪ Orthogonal diagonal shows a slight sorting of the

models according to the gluino mass, nontrivial

as the signal features only depend weakly on this
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Dataset 1 results



▪ Dark matter production at the LHC, with one jet and missing energy

▪ Vector mediator

▪ Pseudoscalar mediator

▪ Squark mediator

▪ 𝑚𝐷𝑀 = 100-900 GeV, in steps of 100 GeV; 𝑀𝑚𝑒𝑑 = 600-2000 GeV, in steps of 200 GeV

▪ Features used for training: 𝑝𝑇 , 𝜂, Δ𝜙(jet, MET), MET, and the mass of the leading two jets
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Dataset 2: Dark matter simplified model

Observations for 𝑚𝐷𝑀 = 100 GeV:
• MET in vector and pseudoscalar 

case only weakly depends on the 
mediator mass

• In the squark case, the MET has a 
stronger correlation with the 
mediator mass



▪ Separate embeddings

▪ Not much dependence on mediator mass

in vector and pseudoscalar case

▪ Squark case shows dependence on

mediator mass
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Dataset 2 results

Colorful contours: 𝑚𝐷𝑀 = 100 GeV; grey contours: all other masses 



▪ Separate embeddings

▪ Not much dependence on mediator mass

in vector and pseudoscalar case

▪ Squark case shows dependence on

mediator mass

▪ Pair embeddings

▪ Vector and pseudoscalar overlap

▪ Squark case has distinct arrangement

▪ Embedding of all three

▪ Vector and pseudoscalar still overlap

▪ Squark case keeps its distinct behavior
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Dataset 2 results

Colorful contours: 𝑚𝐷𝑀 = 100 GeV; grey contours: all other masses 



▪ A selection of models from the Dark machines anomaly challenge dataset (Dark 

Machines community 2020, Aarrestad et al 2022)

▪ Scenarios resulting in jets + MET

▪ SM background

▪ Features used for training: 𝐸, 𝑝𝑇 , 𝜂, 𝜙 of the first four jets, MET of the event
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Dataset 3: Dark machines subset

Observations:
• Squark model has the highest Δ𝑚 → hard MET 

and 𝑝𝑇 spectra
• Heavy gluino model has 4 hard jets → high 𝑝𝑇

of the third jet compared to other models
• Light gluino model has smallest Δ𝑚→ soft 

spectra
• Z’ model: jets come from ISR, not dependent on 

its high Δ𝑚



▪ The latent space is organized along two main axes:

▪ MET

▪ 𝑝𝑇 of the third jet

▪ Light gluino, Z’ and stop models are clustered together, as

expected from ISR and soft spectrum of light gluino; light

gluino has softer MET, putting it higher in latent dim 2

▪ Heavy gluino: high 𝑝𝑇 of the third jet, intermediate MET

▪ Squark: highest MET, also hard 𝑝𝑇 spectra

▪ SM background: softest spectra overall
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Dataset 3 results



▪ We developed a machine learning model capable of clustering different BSM scenarios in 

a latent space according to their phenomenology

▪ When analyzing the arrangement in latent space, it was obvious that the model had 

found relevant axes

▪ By analyzing such latent spaces, representative models that cover a certain area 

of the latent space can be selected as benchmarks for searches

▪ Correlations between latent space axes and feature space can be used to identify 

observables suitable for distinguishing different models

▪ Regions not covered in latent space could indicate gaps that need to be filled

▪ Future work: include cross section; explore more expressive architectures...
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Conclusions
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