

Compare & Contrast: Anomaly Detection in ATLAS

Gabriel Matos

Columbia University June 16, 2025 - AD4HEP 2025 Workshop

Motivation for Model Generic Searches

• Beyond the Standard Model (BSM) searches in colliders follow a general recipe

- 1. Pick a model for some final state signature
- 2. Determine relevant parameters for the model
- 3. Design selections on your observables to enhance the signal over background

Motivation for Model Generic Searches

• Beyond the Standard Model (BSM) searches in colliders follow a general recipe

- 1. Pick a model for some final state signature
- 2. Determine relevant parameters for the model
- 3. Design selections on your observables to enhance the signal over background

Problem: way too many models/signatures to develop independent searches for!

Motivation for Model Generic Searches

• Beyond the Standard Model (BSM) searches in colliders follow a general recipe

- 1. Pick a model for some final state signature
- 2. Determine relevant parameters for the model
- 3. Design selections on your observables to enhance the signal over background

Problem: way too many models/signatures to develop independent searches for!

Anomaly Detection (1)

• Machine learning-based **anomaly detection** (AD) can be used to train models to detect anomalous features in a dataset inconsistent w/ a background-only model

Anomaly Detection (2)

• Machine learning-based **anomaly detection** (AD) can be used to train models to detect anomalous features in a dataset inconsistent w/ a background-only model

Anomaly Detection in ATLAS

• So far, all AD results in ATLAS have been searches for new resonances on a 2body invariant mass spectrum, so called "bump hunts"

BSM model dependence

• We'll compare & contrast how these searches tackled key questions in colliderbased AD, including input modeling, level of supervision, and result reporting

Anomaly Detection in ATLAS

• So far, all AD results in ATLAS have been searches for new resonances on a 2body invariant mass spectrum, so called "bump hunts"

BSM model dependence

• We'll compare & contrast how these searches tackled key questions in colliderbased AD, including input modeling, level of supervision, and result reporting

Anomalous Jet Substructure in $Y \rightarrow XH$

- The Higgs boson coupling to mass motivates the search of new TeV scale particles produced in association with a Higgs
- Hadronic final states in these searches often lead to jets that have substructure due to the boosting of the daughter particles (reconstructed as large-R jets)
- Y→XH is a fully hadronic search for a new resonance Y (~TeV) decaying into a SM Higgs and a new particle X (~100s GeV) displaying anomalous jet substructure

• Two-prong $X \rightarrow q\bar{q}$ assumption used for exclusion result, signal grid production, & to define model-dependent benchmark \rightarrow **anomaly & exclusion regions**

Anomalous Jet Substructure in $Y \rightarrow XH$

- The Higgs boson coupling to mass motivates the search of new TeV scale particles produced in association with a Higgs
- Hadronic final states in these searches often lead to jets that have substructure due to the boosting of the daughter particles (reconstructed as large-R jets)
- Y→XH is a fully hadronic search for a new resonance Y (~TeV) decaying into a SM Higgs and a new particle X (~100s GeV) displaying anomalous jet substructure

• Two-prong $X \rightarrow q\bar{q}$ assumption used for exclusion result, signal grid production, & to define model-dependent benchmark \rightarrow **anomaly & exclusion regions**

Challenge: Autoencoder for Jet Substructure

- Idea: we can model jets by their constituent 4-vectors and feed them to an AE
 - Vast abundance of "featureless" QCD lets one train over data → **unsupervised**
 - Jets with substructure get flagged with a high anomaly score

- **Challenge:** # of constituents varies per jet & AE requires a fixed length input
 - Need a way to accommodate variable number of inputs

Variational Recurrent Neural Network

- We can solve this problem with a recurrent neural network (RNN)
- Variational RNN: recurrent architecture that updates a variational AE latent space at each time step; accommodates variable-length input sequences
- Define **anomaly score (AS)** per jet as a function of the KL divergence loss term

VRNN Jet Tagging in $Y \rightarrow XH$

- Train over full ATLAS Run 2 dataset of large-R jets with $p_T > 1.2$ TeV
 - Up to 20 constituents ordered by k_T splitting & D_2 , τ_{32} , Split₁₂, Split₂₃
- Evaluate over four substructure hypotheses to assess model independence
 - 2-prong, 3-prong, heavy flavor ($b\bar{b}$), and dark jets (Pythia Hidden Valley)
- Employ AS > 0.5 SR definition for sensitivity to a broad range of signatures

Results & Outlook

- Scan M_Y , M_X parameter space & quote most significant excess w.r.t. the expected background via the BumpHunter (BH) algorithm since no signal assumption
- Compare with $X \rightarrow q\bar{q}$ model-dependent region to assess sensitivity breadth
 - AS selection competitive on two-prong signals & x10 better for dark jets

First fully unsupervised result in ATLAS!

Semi-Visible Jets Search

- **Semi-visible jets** (SVJs) arise from Hidden Valley models describing a dark sector that is strongly interacting, allowing for dark matter (DM) particles to hadronize
 - These lead to complex signatures in which invisible dark hadrons partially decay back to visible SM particles and produce jets that are **semi-visible**
- Subtle shower differences between dark and SM QCD motivates the use of lowlevel track variables to spot key differences between signal and bkg. correlations
 - Like Y→XH, define model-dependent **exclusion region** for limits and modelindependent **anomaly region** for generalizability beyond SVJs

Challenge: Permutation Invariance

- One pitfall of the VRNN approach is that the ordering of constituents matters
- Collider data is best described as a *set* of objects (e.g. particle tracks, calo clusters, etc.) that are not only variable in length but also **permutation invariant**
 - Artificial manipulations such as zero-padding or imposing an ordering scheme can impact our ability to fully exploit low-level information from our detectors
- **Challenge:** employ AD on low-level objects conserving permutation invariance
 - We can use a supervised classifier to create a **smart embedding** that is fixedlength, permutation invariant, and can be fed to an AE/VAE for AD

Particle Flow Network

- One way to achieve this embedding is with a **P**article **F**low **N**etwork (PFN)
- The PFN is a **supervised** classifier based on the Deep Sets framework
 - The network takes in an arbitrary number of particle features that are encoded into a latent space, per-particle representation by a set of learned functions Φ_a
 - These per-particle representations are combined into event level observables \mathcal{O}_a that are **inherently permutation invariant** by **summing** over input particles

• Classifier *F* used to define model-dependent, supervised exclusion region

Anomaly Detection on Particle Flow Latent Space

- The fixed-length PFN embedding \mathcal{O}_a is derived by training the supervised classifier to distinguish SVJs from QCD jets \rightarrow smart embedding with SVJ prior
- We pass data through this embedding and use it to train a **unsupervised** VAE & define a novel architecture **ANTELOPE** performing AD on the PFN's latent space

• Allows performing AD in low-level detector objects in a permutation invariant way

ANTELOPE in SVJ Search

- PFN and ANTELOPE trained over the 80 hardest ghost-associated track 4-vectors (p_T , η , ϕ , E) and impact parameters (d_o , z_o) in the two leading jets of the event
 - PFN is trained on QCD MC & SVJ signals, ANTELOPE only on data
- Tested over signatures high in MET & displacement to assess model independence

Results & Outlook

- Perform fit over m_T spectrum in anomaly region and quote p-value
 - Use as background template for BH and quote largest deviation
- Compare with model-dependent PFN region to assess model independence
 - Broader sensitivity & order of magnitude better for EJs, Gluino R-hadron

Compare & Contrast

	Y→XH	SVJ
Challenge	Variable-length inputs	Variable length inputs & permutation invariance
Input modeling	Jet constituents	Particle tracks (after PFN embedding)
Architecture	VRNN	ANTELOPE
Trained on	Data	Data (PFN on QCD & SVJs)
Background estimate	DNN reweighing	Polynomial fit
Result	BH <i>p</i> -value	Fit & BH <i>p</i> -values
Supervision	Unsupervised	Semi-supervised
Areas of improvement?	VRNN requires ordering	ANTELOPE relies on signal prior*

*Maybe an advantage instead of disadvantage

What Does the Future Hold?

arXiv:1706.03762

Sophisticated networks

- Adapting graphs, transformers, normalizing flows for less-thansupervised applications
- See tomorrow's session

Trigger-level AD on FPGAs

Can all have significant impact on future AD analysis results

Thank you!

Overview: Autoencoder (AE)

Overview: Variational AE (VAE)

LHC Olympics Dataset

- Both the VRNN and ANTELOPE were developed with the <u>LHC Olympics</u> dataset
- The dataset consists of 3 R&D and 3 black box samples
 - Each event described as set of up to 700 (massless) particle 4-vectors (p_T, η, ϕ)
 - **R&D**: QCD multijet, 2-prong, and 3-prong
 - Black boxes: BB1 2-prong BB2 QCD multijet BB3 Resonance→Dijet/Trijet (No signal)

VRNN in the LHC Olympics

- LHCO events reco'd into two large-radius (R=1.0) jets with leading $p_T > 1.2$ TeV
- VRNN trained on QCD-only to derive anomaly score
 - Performance assessed on two & three-pronged samples

VRNN Preprocessing: Alignment

- Alignment procedure done to remove mass and p_T information from input jets to avoid tagging on kinematics alone Algorithm 1: Jet Alignment
- Procedure:
 - 1. Rescale each jet to the same mass
 - 2. Boost each jet to the same energy
 - **3.** Rotate each jet to the same η/ϕ orientation
- **Result:** anomaly score far less correlated with mass in background jets

VRNN Preprocessing: Ordering

- Selecting an appropriate ordering scheme in recurrent neural networks can highlight important sequence features & boost performance
- Select k_T -distance ordering to highlight substructure: nth constituent has highest k_T -distance relative to previous, starting with highest p_T constituent

 $c_n = \max(p_{T,n} \times \Delta R_{n,n-1})$

• **Result:** better sep. of two-prong signal from QCD background than p_T sorting

ANTELOPE in the LHC Olympics

• We use the two-prong and QCD LHCO events to create the PFN embedding and then an orthogonal slice of QCD to train ANTELOPE

Y→XH: Exclusion Region Results

- Exclusion region optimized to select $X \rightarrow q\bar{q}$ events using D_2 energy correlator
 - Perform fits across M_Y spectrum in optimized bins of M_X
 - Limits are derived on the production cross-section of Y \rightarrow XH $\rightarrow q\bar{q}b\bar{b}$

Y→XH: 2D BumpHunter Results

• Global significance of 1.43σ when accounting for look-elsewhere effect

SVJ: Analysis Strategy (1)

- Subtle shower differences between dark and SM QCD motivates the use of lowlevel track variables in the selection of SVJs and **two different ML strategies**
 - Exclusion region: Particle Flow Network (PFN) \rightarrow supervised ML
 - Uses a functional form fit of m_T to define the background shape & set limits on signal cross section for SVJ signal model by leveraging track-level inputs
 - Anomaly detection region: ANTELOPE \rightarrow semi-supervised ML
 - Uses the functional form fit of m_T to define the background shape & perform a bump hunt for any excesses (no SVJ model input)

SVJ: Analysis Strategy (2)

SVJ: Exclusion Region Results

- Exclusion region defined from supervised classifier score of the PFN
 - SR defined from PFN score > 0.6 with W_{j2} > 0.05 selection
 - Limits set on the SVJ production cross-section at 95% CL

