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Motivation

DM graphic from T. Tait

Many LHC 
searches but no 
new physics so 

far
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None so far...

Motivation

>
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Huge amount of 
effort!
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None so far...

Motivation

>

DM graphic from T. Tait

Huge amount of 
effort!

But...

Lets make sure we aren’t 
missing anything!
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Dijet Resonance Anomaly Search

● A→BC topology 
– Heavy resonance (A) → daughters B and C

– B & C are boosted → contained in a large radius jet

● Look for B & C jets with ‘anomalous’ substructure

Results from
ROPP 88 067802
arXiv:2412.03747

https://iopscience.iop.org/article/10.1088/1361-6633/add762
https://arxiv.org/abs/2412.03747
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Jet Substructure

Typical jet
● One central axis (prong)
● From primary vertex
● ...

Graphics source

Anomalous jets
● Multiple prongs
● Displaced vertices
● ???

R→WW→ 4q ???

https://arxiv.org/abs/1909.12285
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Signal Models

Expect 
sensitivity to 

many additional 
kinds of signals!

B Jet 
substructure

C
 J

et
 

su
b

st
ru

ct
u

re
Picked a set of unexplored models to 

evaluate performance
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Analysis Overview

Real Data Trained Model Anomaly Metric Cut

SIG
like

BG
like

Bump Hunt New PhysicsPreselected Data

2 large radius 
(AK8) jets 

Control region 
2.0 < |Δη| < 2.5 *

Signal Region
|Δη| < 1.3

Signal (s-channel)
QCD (t-channel)

SR CR
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Analysis Overview

Real Data Trained Model Anomaly Metric Cut

SIG
like

BG
like

Bump Hunt New PhysicsPreselected Data

2 large radius 
(AK8) jets 

Control region 
2.0 < |Δη| < 2.5 *

Signal Region
|Δη| < 1.3

Bkg: Standard Dijet 
Parameterization
 Signal: Double 

Crystal Ball

Bumps? Limits on signal 
models
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~2σ

Without any substructure cuts → 
Signal swamped by QCD background… 

The Bump Hunt
Background fit with 

standard analytic functions

Double Crystal Ball
 signal shape

CMS-NOTE
-2023-013

https://cds.cern.ch/record/2881089
https://cds.cern.ch/record/2881089
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Cut on anomaly 
score

~2σ
>> 7σ 

Anomaly detection
finds hidden resonance!

The Bump Hunt CMS-NOTE
-2023-013

https://cds.cern.ch/record/2881089
https://cds.cern.ch/record/2881089
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Analysis Overview

Real Data Trained Model Anomaly Metric Cut

SIG
like

BG
like

Bump Hunt New PhysicsPreselected Data

2 large radius 
(AK8) jets 

Sideband region 
2.0 < |Δη| < 2.5 *

Signal Region
|Δη| < 1.3

Bkg: Standard Dijet 
Parameterization
 Signal: Double 

Crystal Ball

Bumps? Limits on signal 
models (tricky)

The fun part!
5 different approaches
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How to identify 
anomalous jets?

Learn QCD jets → 
look for outliers

Increasing Model Dependence 

VAE
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Looking for Outliers

Illustrations: J Gonski, A Kahn

Train ‘Autoencoder’ Training Sample from data sideband
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Looking for Outliers

Illustrations: J Gonski, A Kahn

Data from signal region

Take difference

Cut

Apply Autoencoder
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Variational Autoencoder (VAE)
● Jet represented by up to 

100 highest pT 
constituents (px, py, pz)

● 100x3 matrix compressed 
to latent space of size 12 

● Trained on jets from |Δη| 
sideband
– Sampled to match SR kin.

Latent space forced to be Gaussian 
thru additional term in loss
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How to identify 
anomalous jets?

Learn QCD jets → 
look for outliers

Increasing Model Dependence 

Look for overdensities 
of signal in data

→ Learn to tag sig vs bkg

VAE
CWoLa

TNT
CATHODE
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Weak Supervision
● Train a classifier between 

signal-rich and background-
rich mixed samples

→ Learns to tag signal vs. bkg

● Performance changes with 
amount of signal in training 
data
– No signal → learn random 

noise
– Lots of signal → approach 

‘supervised’ (optimal) classifier

Train on two mixed samples

[Metodiev, Nachman, Thaler, 1708.02949]

Aka ‘Classification Without 
Labels’ (CWoLa)

https://arxiv.org/abs/1708.02949
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CWoLa Hunting
● Assume signal is a narrow 

resonance
● Guess a mass window where it lives

– Train signal window vs. narrow 
sidebands using weak supervision

[Collins, Howe, Nachman 1902.02634]

0 1

● Repeat procedure, scanning 
over different mass windows 
– (2x6 windows used)

● Need to be careful about 
correlations with Mjj

https://arxiv.org/abs/1902.02634
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?

?

Sig-rich
sample

Bkg-rich
sample

Classifier

Tag N’ Train 
purifies samples by 
first tagging with AE

Data from 
SR

Interpolated
bkg

CATHODE
Interpolates bkg events into 

SR to construct sample

[OA & Suarez 2002.12376]

[Hallin et al 2109.00546]

https://arxiv.org/abs/2002.12376
https://arxiv.org/abs/2109.00546
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How to identify 
anomalous jets?

Learn QCD jets → 
look for outliers

Look for overdensities 
of signal in data

→ Learn to tag sig vs bkg

Encode a ‘prior’ of 
potential signals →

look for similar

Increasing Model Dependence 

VAE
CWoLa

TNT
CATHODE

VAE QUAK
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Quasi Anomalous Knowledge (QUAK)

● Hybrid approach between fully model-
indep. and standard search

● Encode a prior on what a potential 
signal may look like
– Use an AE trained on a variety of different 

signal MC’s

● Construct ‘QUAK space’: 
– Loss of signal AE vs bkg AE

● Select events with low sig loss and high 
bkg loss 

‘Bkg-like’ Loss

‘S
ig

- l
i k

e
’ 

L o
ss

Hypothetical QUAK 
Space

[Park et al 2011.03550]

https://arxiv.org/abs/2011.03550
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Input Features

VAE

Jet Constituents
p

x
, p

y
, p

z

CWoLa 
Hunting

Jet mass
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N
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Leptonic 
energy frac.

Sub-jets b-tag
score

TNT

Same as 
CWoLa Hunting

CATHODE

Jet masses

τ
41

’s

-------------------
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+ Subjet b-tag 
scores

QUAK
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Hand-picked high-level featuresLow-level features
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Sensitivity
2 Pronged Signal 3 Pronged Signal

Inclusive analysis (no substructure cuts) sees only “hints”
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Sensitivity
2 Pronged Signal 3 Pronged Signal

Traditional substructure cuts enhance sensitivity for a specific model, but not others
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Sensitivity
2 Pronged Signal 3 Pronged Signal

Anomaly detection enhances sensitivity for many models at once!
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Sensitivity
2 Pronged Signal 3 Pronged Signal

Anomaly detection enhances sensitivity for many models at once!

Hint

Discovery!

Hint

Discovery!
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What if you see an excess?

Investigate features of most anomalous events!

~400 GeV 
daughter mass

b-tags 3-pronged

Most 
important 
feats

✔  Matches characteristics of injected signal

New plots from
journal version
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Complementary
QCD Bkg.W’→ B’t → bqq bqqX→ YY → qq qq

● Compute correlation coefficients between different anomaly scores
● Complementary approaches lead to relatively low correlations!

CMS-NOTE
-2023-013

https://cds.cern.ch/record/2881089
https://cds.cern.ch/record/2881089
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Steps to Unblinding
✔ No method creates artificial excesses in MC
✔ Can successfully find anomalies in MC
✔ Can characterize anomalies if found 
✔ Apply to data |Δη| sideband → no excesses

Time to apply to unblind!
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One of our most
 anomalous events!

(according to VAE)

Mjj = 2.5 TeV
Evt: 851591650
Run: 322332
Era : 2018D

2-pronged anomaly

High energy 
constituents 

anomaly
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Search Results
No significant excesses from any method

QUAK & CATHODE 
results similar

Results from diff
SR’s shown
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● Anomaly cut just like any other 
multivariate cut → no ‘special’ 
uncertainties

● Largest uncertainty is from MC 
modeling of jet substructure
– Developed new data-driven 

correction + uncertainty for 
modeling high prong jets! 

What about uncertainties?
Data/MC Lund Jet Plane 

Correction
CMS-JME-23-001

Details in Backup

https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/JME-23-001/index.html
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Limits
● Compute limits on benchmark from 

all anomaly methods on variety of 
signal models 
– Compare against inclusive & 

traditional model-specific 
approaches

– First-ever limits on several models!

● Anomaly detection improves limits by 
~2-6x!
– Does not reach sensitivity of 

dedicated search

Very different sig. models!
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Discovery Sensitivity
● ‘Discovery focused’ 

performance metric
● “What cross section do I 

need to get an expected 
3σ/5σ excess?”

● Anomaly methods 
improve sensitivity by 
~3-6x compared to 
inclusive
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New: X→HY Search

● Re-using an AE from the dijet search
● Limits on Y→WW and Y→bqq

CMS-PAS-
B2G-24-01
5

?

https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/B2G-24-015/index.html
https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/B2G-24-015/index.html
https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/B2G-24-015/index.html
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Conclusions
● First usage of anomaly detection in CMS

– Dijet resonance search with anomalous substructure

● Demonstrated sensitivity to broad range of signals
● Hopefully more searches to follow!
● Points for discussion

– What should be reported for an anomaly detection search the case of 
null results? (ie do we need limits?)

– Is reinterpretation of weakly supervised searches impossible?
– How can we increase experimental adoption of AD methods?
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Conclusions
● First usage of anomaly detection in CMS

– Dijet resonance search with anomalous substructure

● Demonstrated sensitivity to broad range of signals
● Hopefully more searches to follow!
● Points I am interested to discuss!

– What should be reported for an anomaly detection search the case of 
null results? (ie do we need limits?)

– Is reinterpretation of weakly supervised searches impossible?
– How can we increase adoption of AD in our collaborations?
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Backup
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Cross Validation

Selected 
samples 

merged for 
bump hunt

Repeat x5 total

*Weakly supervised methods use additional layer 
of cross val for stability (see backup)
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Decorrelate with Mjj

High Mjj events are rarer → 
higher anomaly score
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Decorrelate with Mjj

Flat Cut

Bkg sculpted
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Decorrelate with Mjj

‘Quantile Regression’ (QR)

Adjust cut to have a 
constant efficiency vs Mjj
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Decorrelate with Mjj

Cut with 
Flat Eff.

Bkg shape 
retained



Oz Amram (Fermilab) 45

Efficiency & Uncertainties
To set a limit on a specific signal model 

proceed as usual

● Signal MC + anomaly detector → efficiency
● One complication for weakly supervised methods : 

signal eff depends on signal xsec! 
– Dedicated methods to calibrate this (requires training 

lots & lots of NN’s), see backup


