Results from CMS Dijet Anomaly Detection Search

Oz Amram AD4HEP Workshop June 16th, 2025

Motivation

Many LHC searches but no new physics so far

Motivation

Motivation

Dijet Resonance Anomaly Search

Results from ROPP 88 067802 arXiv:2412.03747

- A → BC topology
 - Heavy resonance (A) \rightarrow daughters B and C
 - B & C are boosted \rightarrow contained in a large radius jet
- Look for B & C jets with 'anomalous' substructure

Jet Substructure

Typical jet

- One central axis (prong)
- From primary vertex

W/Z→qq h→bb $R \rightarrow WW \rightarrow 4a$ t→Wb→qqb ???

Anomalous jets

- Multiple prongs
- Displaced vertices
- ???

Signal Models

Jet

Jet

в

А

р

Picked a set of unexplored models to evaluate performance

B Jet substructure

	i		1 prong	2 prong	3 prong	4 prong	5 prong	6 prong
C Jet	substructure	1 prong	,	Q* → qW m _{Q*} = [2,3,5] TeV m _W = [25,80,170,400] GeV				
		2 prong		$\begin{array}{c} \textbf{X} \rightarrow \textbf{YY'} \\ m_X = [2,3,5] \ \text{TeV} \\ m_Y = [25,80,170,400] \ \text{GeV} \\ m_{Y'} = [25,80,170,400] \ \text{GeV} \end{array}$,	W_{KK} → RW → WWW $m_{WKK} = [2,3,5]$ TeV $m_R = [170,400]$ GeV		
		3 prong			$W' \rightarrow tB'$ $m_{W'} = [2,3,5] \text{ TeV}$ $m_{B'} = [25,80,170,400] \text{ GeV}$			
		4 prong		Expect		$\label{eq:mx} \begin{array}{l} \textbf{X} \rightarrow \textbf{YH} \rightarrow \textbf{WWWW} \\ m_X = [2,3,5] \ \text{TeV} \\ m_Y = [170,400] \ \text{GeV} \\ m_H = [170,400] \ \text{GeV} \end{array}$		
		5 prong	mar	y additional			Z' → T'T' → tZtZ $m_{Z'} = [2,3,5] \text{ TeV}$ $m_{T'} = [400] \text{ GeV}$	
		6 prong	kind	s of signals!				$\begin{array}{l} \textbf{Y} \rightarrow \textbf{HH} \rightarrow \textbf{tttt} \\ m_{Y} = [2,3,5] \text{ TeV} \\ m_{H} = [400] \text{ GeV} \end{array}$

7

Analysis Overview

Analysis Overview

The Bump Hunt

Without any substructure cuts \rightarrow Signal swamped by QCD background... CMS-NOTE -2023-013

The Bump Hunt

Anomaly detection finds hidden resonance!

CMS-NOTE -2023-013

Increasing Model Dependence

Looking for Outliers

Train 'Autoencoder'

 $\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\$

Training Sample from data sideband

Looking for Outliers

Apply Autoencoder Data from signal region • Cut Take difference 1 0 reconstruction loss Oz Amram (Fermilab)

Illustrations: J Gonski, A Kahn

Variational Autoencoder (VAE)

Latent space forced to be Gaussian thru additional term in loss

- Jet represented by up to 100 highest p_T constituents (p_x, p_y, p_z)
- 100x3 matrix compressed to latent space of size 12
- Trained on jets from |Δη| sideband
 - Sampled to match SR kin.

How to identify anomalous jets?

Learn QCD jets → look for outliers

Look for overdensities of signal in data → Learn to tag sig vs bkg

> CWoLa TNT CATHODE

Increasing Model Dependence

Weak Supervision

Aka 'Classification Without Labels' (CWoLa)

Train on two mixed samples

 Train a classifier between signal-rich and backgroundrich mixed samples

 \rightarrow Learns to tag signal vs. bkg

- Performance changes with amount of signal in training data
 - No signal \rightarrow learn random noise
 - Lots of signal → approach
 'supervised' (optimal) classifier

CWoLa Hunting

- Assume signal is a narrow resonance
- Guess a mass window where it lives
 - Train signal window vs. narrow sidebands using weak supervision
- **Repeat procedure**, scanning over different mass windows
 - (2x6 windows used)
- Need to be careful about correlations with Mjj

CATHODE

Interpolates bkg events into SR to construct sample

[Hallin et al 2109.00546]

Tag N' Train purifies samples by first tagging with AE

How to identify anomalous jets?

Increasing Model Dependence

Quasi Anomalous Knowledge (QUAK)

- **Hybrid approach** between fully modelindep. and standard search
- Encode a prior on what a potential signal may look like
 - Use an AE trained on a variety of different signal MC's
- Construct 'QUAK space':
 - Loss of signal AE vs bkg AE
- Select events with low sig loss and high bkg loss

Input Features

2 Pronged Signal

3 Pronged Signal

Inclusive analysis (no substructure cuts) sees only "hints"

2 Pronged Signal

3 Pronged Signal

Traditional substructure cuts enhance sensitivity for a specific model, but not others

2 Pronged Signal

3 Pronged Signal

Anomaly detection enhances sensitivity for many models at once!

2 Pronged Signal

3 Pronged Signal

Anomaly detection enhances sensitivity for many models at once!

What if you see an excess?

Investigate features of most anomalous events!

Matches characteristics of injected signal

New plots from journal version

Complementary

- Compute correlation coefficients between different anomaly scores
- Complementary approaches lead to relatively low correlations!

Steps to Unblinding

- No method creates artificial excesses in MC
- Can successfully find anomalies in MC
- Can characterize anomalies if found
- \checkmark Apply to data $|\Delta\eta|$ sideband \rightarrow no excesses

Time to apply to unblind!

One of our most anomalous events! (according to VAE)

High energy constituents anomaly

Mjj = 2.5 TeV Evt: 851591650 Run: 322332 Era : 2018D 2-pronged anomaly

Search Results

No significant excesses from any method

QUAK & CATHODE results similar

Oz Amram (Fermilab)

What about uncertainties?

- Anomaly cut just like any other multivariate cut → no 'special' uncertainties
- Largest uncertainty is from MC modeling of jet substructure
 - Developed **new** data-driven correction + uncertainty for modeling high prong jets!

Data/MC Lund Jet Plane Correction CMS-JME-23-001

Details in Backup

Limits

- Compute limits on benchmark from all anomaly methods on variety of signal models
 - Compare against **inclusive** & traditional model-specific approaches
 - First-ever limits on several models!
- Anomaly detection improves limits by ~2-6x!
 - Does not reach sensitivity of dedicated search

Discovery Sensitivity

- 'Discovery focused' performance metric
- "What cross section do I need to get an expected 3σ/5σ excess?"
- Anomaly methods improve sensitivity by ~3-6x compared to inclusive

New: X -> HY Search

- Re-using an AE from the dijet search
- Limits on $Y \rightarrow WW$ and $Y \rightarrow bqq$

CMS-PAS-B2G-24-01

Conclusions

- First usage of anomaly detection in CMS
 - Dijet resonance search with anomalous substructure
- Demonstrated sensitivity to broad range of signals
- Hopefully more searches to follow!

Conclusions

- First usage of anomaly detection in CMS
 - Dijet resonance search with anomalous substructure
- Demonstrated sensitivity to broad range of signals
- Hopefully more searches to follow!
- Points I am interested to discuss!
 - What should be reported for an anomaly detection search the case of null results? (ie do we **need** limits?)
 - Is reinterpretation of weakly supervised searches impossible?
 - How can we increase adoption of AD in our collaborations?

Oz Amram (Fermilab)

Cross Validation

High Mjj events are rarer \rightarrow higher anomaly score

'Quantile Regression' (QR)

VAE Anomaly

Adjust cut to have a constant efficiency vs Mjj

Efficiency & Uncertainties To set a limit on a specific signal model proceed as usual

- Signal MC + anomaly detector \rightarrow efficiency
- One complication for weakly supervised methods : signal eff depends on signal xsec!
 - Dedicated methods to calibrate this (requires training lots & lots of NN's), see backup