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It is a weakly supervised anomaly detection method

What is Cathode?
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Search for new physics
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Bump Hunt ● Resonance in feature m
● Smooth background, localized signal

➢ Many dedicated searches
➢ No new physics found 
➢ Broader approach needed (Use data-driven, model-agnostic searches)
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Anomaly detection

(2109.00546, Hallin et al) 
CATHODE
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● Data-driven, model-independent approach 

● Train an ML model to assign anomaly scores to events.

● Apply cut to these scores to select the most anomalous events to reduce background, 
keep signal

https://arxiv.org/abs/2109.00546
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● Features:

● Train the anomaly detector using auxiliary 
features

● Utilizing x gives further separation in signal-
background 

Anomalous Resonances

➢ resonant feature, m
➢ auxiliary features : x1 , x2 , x3 … 

x’x’x’



  

CATHODE
Classifying Anomalies THrough Outer Density Estimation
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● Start with data, choose resonant feature m and auxiliary features x1, x2, x3...
● Split the mass spectrum into SR (signal region) and the SB (side bands)

1. Density Estimation (Normalizing Flows)

SR SBSB

● Train a generative model only on SB to learn the density of x conditioned on m
● Sample the background in the SR
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CATHODE
Classifying Anomalies THrough Outer Density Estimation
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CATHODE
Classifying Anomalies THrough Outer Density Estimation

2. Classification (Weak Supervision)
● Train a classifier in SR between the actual data and the sampled background 
● Put a cut on the score to select the most anomalous events

sampled

data vs 
background

signal vs 
background
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Application and latest developments
● Cathode applied in CMS analysis for dijet anomaly detection

● Using Features: MJJ, MJ1, ΔMJJ, τ21J1, τ21J2
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1.  Generalizing the signal topologies 

2.  Weak supervision using event level features ( 2504.13249)

 CMS analysis  (2412.03747)
ATLAS analysis  (2502.09770)

Now Exploring →   New Signal topologies and new feature sets 

https://arxiv.org/pdf/2504.13249
https://arxiv.org/abs/2412.03747
https://arxiv.org/abs/2502.09770
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(1) Generalizing the signal topologies

● Use complicated signal → LHCO BB3 Dataset (2101.08320)
with mX = 4.2 TeV 

● Two different decay modes, dijet and trijet final states

● How to define the resonant feature in this case? 

Sig 1 Sig 2

Mall – mass of all the particles 

https://arxiv.org/abs/2101.08320
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● Apply Recursive Soft Drop (1804.03657),  

Mall → MRSD

● Results in more narrow peak that allows definition 
of signal region

● Check if Anomaly detection works!

Mall – mass of all the particles 

(1) Generalizing the signal topologies
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(1) Working point for BB3

● Results shown for

  

● Input features used: MRSD, HT, τ1, τ2, τ3, τ4

● Next step: Check if Cathode classifier works

In collaboration with David Shih*, Sung Hak Lim**, Luigi Favaro***

➢ Supervised classifier
➢ Idealized anomaly detector 

( data Vs.  perfect bkg )

*Rutgers University, US   **IBS,CTPU,South Korea  ***Université catholique de Louvain

https://www.uclouvain.be/fr
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(2) Weak supervision using event level features

● Prior studies show that low level features for weak supervision 
requires large signal to work

● Used summary variables + more event level observables like 
non τ jet pT  , MET

Signal topology: di-τ + X

Input Feature Selection : first ten simplex coordinates, MET, 
non-τ jet pT sum, and di-τ ∆R

( 2504.13249, L. Brennan et al)

https://arxiv.org/pdf/2504.13249
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● CATHODE applied 

● Density Estimation done: Bkg  Vs. Sampled Bkg 

● Weakly supervised classification

● Cut on anomaly score

(2) Weak supervision using event level features
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● Results shown for 3 signal (diτ+X) scenarios

● Cathode results in enhancement in signal 
sensitivity

● Signal significance above discovery level for 
 ≥ 2σ signal injection

(2) Weak supervision using event level features



  

Summary

● Cathode – weakly supervised anomaly detection

● Used in CMS analysis

● Improvements:
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1) Exploring new signal topologies 

2) Event level features for weak supervision

( 2504.13249, L. Brennan et al)

   (2412.03747)

(2109.00546)  

https://arxiv.org/pdf/2504.13249
https://arxiv.org/abs/2412.03747
https://arxiv.org/abs/2109.00546
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Bacakup – Phase Space Coordinates

● References for the summary variables used-

● Represents collider events using geometric phase space →  provides a coordinate system that 
is both global and intrinsic to the event's kinematics

1) The Phase space distance between collider events (2405.16698)

2) Covariantizing Phase Space (2008.06508)

https://arxiv.org/abs/2405.16698
https://arxiv.org/abs/2008.06508
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