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Introduction and Motivation

Two Complementary Approaches to Search for New Physics:
1. Dedicated Search (Majority of Analyses)
» Focus on specific, well-motivated region of phase space

» More sensitive, but may not be looking at the right place

2. Anomaly Detection
» |dentify deviations without strong model assumptions

» Less sensitive, but could search broadly across many possibilities
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Anomaly Detection - Weakly Supervised Approach

Weakly Supervised Learning
» No truth labels specified, but with some knowledge about their relative
composition in the samples

CWoLA Method [1708.02949]

» The optimal classifier between two
mixed Samples (mixed Signal and back- Data D (Label = 1) Reference R (Label = 0)

ground) is also the optimal classifier be-
tween signal (S) and background (B) ::9:5

» A convenient choice is: QOOO®
Data (D): Observed data 95

(may contain signal)
Reference (R): Pure background
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Anomaly Detection - Weakly Supervised Approach
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Unconstrained Anomaly Fish-like Anomaly
Limitation of Traditional CWoLA Method
» Weakly classifier does not know any physics about the data
» Model too flexible to fit different forms of signal — Poor sensitivity

» Result is difficult to interpret: don’t know what the anomalies
correspond to

» Model easily misguided by noisy/irrelevant features
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Prior Assisted Weak Supervision (PAWS)
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PRIOR-ASSISTED
WEAK SUPERVISION

Prior Assisted Weak Supervision (PAWS) [2405.08889]
» Assume a broad class of signals that could describe the data

» Constrain the weakly supervised (WS) model to a physically motivated
manifold

» Balance between performance and model independence
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Prior Assisted Weak Supervision (PAWS)

Core Idea of PAWS
» Pre-train a fully supervised classifier frs(z) that serves as the prior

» Parameterize the model by the physics parameters 0 of the signals
so that it is sensitive to generic signals from a broad parameter space

» Re-express the weakly supervised model fws(z) in terms of fes(x,6),
recognizing

Pp(x,0) = pPs(z,0) + (1 — ) Pp(x)
fes(Z, 0) approximates the likelihood ratio:

N Ps(x|0) _ Ps(xl6) _ frs(,0)
frs(,0) ~ Ps(z|0) + Pg(z) Ars = Pp(z)  1-— frs(z,0)
which gives
fus (2, 0) ~ Pp(|0) _ pAps(z]0) +1—p

P (al6) + Pr(@)  nhrs(al8) + 201 — 1)
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Prior Assisted Weak Supervision (PAWS)

Core Idea of PAWS
» Pre-train a fully supervised classifier fes(z) that serves as the prior

» Parameterize the model by the physics parameters 6 of the signals
so that it is sensitive to generic signals from a broad parameter space

» Re-express the weakly supervised model fws(x) in terms of frs(z,6)

» Freeze weights and biases of frs(x,0) and let fws(z,6) learn the
values of ¢ and .

» When 6 matches the correct value corresponding to the signal, physics
knowledge from FS drives the performance of WS — found the
anomalous signal!
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Physics Scenario: Heavy Resonance W’ — XY in Dijet Final State

» Extension of LHC Olympics dataset with W’ — X (qq)Y (¢
and W' — X(qqq)Y (qq

q) (2-prong)

) (3-prong) signals and QCD(qq) backgrounds

QCD (qq)
Background

W’ — X(qq)Y (q9)
2-prong Signal

W’ — X(qq9)Y (q9)
3-prong Signal

» Signals parameterised by 8 = (mx,my ) in the mass range of (50, 600)
GeV with 50 GeV intervals

» Features 7 = {mJ1, mJ277'2]1177-21 77'3217 }
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Feature Distributi

ons

» Fully supervised model frs(z, 6) learns to separate signals from
background and the parametrization of signals in terms of 6
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Model Architectures

[Jet S (f)] [Diiet Dl <9)] » Turn feature input 6 into learnable

neural network weights w;

» Freeze supervised (prior) model

[Jet Features (z)] {T\rain Weights wl]

Hidden Layer

Concatenate

Prior Model

Likelihood

T

Fully Supervised Classifier Weakly Supervised Classifier
(Prior Model)
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Visualizing Embeded Knowledge from Prior Model

Loss Landscapes

» Scanning average loss values on test samples in a 2D parameter
space, i.e. the physics parameters (mx,my).

ji=000%

i, vy = (300, 300) Gev fi=0.30%
A wn

T3 s -7 -6 -5 4 3

-6 -5 -4
logy)

» With no signal injected, the learned . is consistent with 0

» With small injected signal of 0.3% at (mx,my) = (300, 300) GeV and

(100, 500) GeV, minimum loss appears at the correct mass and .. as
guided by the prior model
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Performance Evaluation

Significance Improvement Characteristic (SIC)

» SIC=c5/\/c5 =

Factor by which the signal significance increases for

a cut on the classifier output at a given ¢
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» When correct 6 are chosen, PAWS matches performance of FS model

» PAWS achieves sensitivity to signals 10 times weaker (0.03%)
compared to classical weakly-supervised approach

» Performance unaffected by noisy features
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Physics Interpretation

Parameter Prediction
» PAWS also gives the values of the physics parameters (mx, my,
signal fraction . and branching ratio «)

» The learned parameters are physical and thus directly interpretable
when the anomaly is in the pre-trained model class
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Conclusion and Outlook

Conclusion

» PAWS introduces a way to inject physical priors into weakly
supervised training, pushing state-of-the-art sensitivity for anomaly
detection

» Interpretable physical parameters and robustness against noisy
features

Outlook

» Unbinned, High-Dimensional Statistical Inference: Turn WS model
directly into a likelihood estimator

» Generative Background: Replace simulated background with
data-driven background

» Scaling Up: Higher dimensional parameter spaces (¢) to cover more
complex theories.

» Beyond the Priors: Study the sensitivity to anomalies that are similar
but not exactly in the pre-trained class.

» Beyond Physics: This method of "prior-assisted” learning is general. It
could be applied to anomaly detection in other scientific fields like
astrophysics or materials science.
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Generator Based Inference - PAWS

Generator Based Inference (GBI) - PAWS
» Follow up work (2506.00119) to be presented by Runze
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Appendix : Out-of-Prior Scenario

Out-of-Prior Case: (mx, my) = (10, 10) GeV

» Still able to offer some degree of improvement to sensitivity
» Unable to reach supervised performance (prior does not match data)
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Jet Substructure of Dijet Signals and Background

QCD Dijet W - XY
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Appendix: Weakly Supervised Dataset

Reference (label = 0) Data (label = 1)
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Appendix: Supervised Model Performance

> (Leg[ Fl’lot) High-dimensional data readily improves performance of pretrained
mode

» (Right Plot) Training a parameteric classifier (on ¢) does not degrade
discriminating power for individual 6
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LHC Analysis Workflow

Traditional Approach

» High dimensional data is hand-crafted into low dimensional
summaries (e.g. histograms) with simple cut-based event
selections

Event
selection

Recon-
struction

W)

Collider Detector

g Scattering MC Shower + Detector

Amplitudes sampler hadron. sim simulation Recon- Event

Quantum _ 4:, \Y struction selection
Theory ° C ’)II

Figure Credit: Ramon
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LHC Analysis Workflow

ML Approach

» Directly compare data and simulation in the natural
high-dimensional space
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Appendix: Resonant Search

» In reality, signal is often buried in a huge pile of background

» Any bump in the data would be washed away by statistical
fluctuations and/or uncertainties

» Solution: Train a classifier to distinguish signal and
background using the high-dimensional features

Threshold

Event counts

Data

Event counts
Event counts

Classifier Output

Background Classifier

Signal
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