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Motivation

• Many more BSM models than possible analyses: Need model-agnostic searches! 
• This analysis: Signal-agnostic mJJ Bump Hunt using Many Features 
• Previous analysis: ATLAS CWOLA Round 1 [2005.02983] (using less features)
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The 4-step Analysis Strategy
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Definition of Signal and Background Regions
• Events with ≥ 2 large radius jets (anti-kt, R=1) with low rapidity difference 
• Signal agnostic scan with 300GeV step size over whole mjj range  
• Signal Regions (SR): 600GeV; Background regions (SB): 600GeV below & above
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Classification of a Potential Signal

• CWOLA method [1708.02949]: Training of mixed samples (S+B vs B) converges to optimal classifier 
• Used Features: Jet mass (Mj) & Jet substructure (τ21j, τ32j) of two AK10 jets (j)

6

Data Bkg. Est.

B

B

B

B

B

BBBBB

B

B BB

B

1 0

Classifier

Scan three subsets: {Mj} {Mj, τ21j} {Mj, τ21j, τ32j}



AD4HEP | Dennis Noll | June 16, 2025

Cut on the classifier and Distribution
• Cut on classifier output to increase signal purity / suppress background 
• Cut on different background efficiencies (FPR)

7

using 2% and 10%



AD4HEP | Dennis Noll | June 16, 2025

Ensembling strategy

• Random fluctuations of single CWOLA classifier lead to disjunct phase space after cut 
• Use ensemble of 10 classifiers, make cut on each classifier, take mean of number of events
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Inference: Fit and Likelihood

• If CWOLA increases purity of an existing signal, there will be a bump in the mjj spectrum: 
1. Fit exponential in side bands (up to four-parametric exponential, iterative procedure) 
2. Compare sum of counts in signal region (SR)
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• Each bin count has two uncertainties: 
• Poisson of counts 
• Classifier ensemble

• Largest uncertainties in SR: 
1. Bkg est: Fit 
2. Data: Poisson 
3. Data: Ensemble 

• (Limits without signal uncertainties)
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(a) (b)

(c) (d)

Figure 11: Central values and spread of the local significances (Z) for (a, b) CURTAIN! and (c, d) SALAD at the two
di!erent selections, (a, c) 𝐿 = 0.1 and (b, d) 𝐿 = 0.02. Significances are shown for all feature sets and 𝑀JJ SR centers.
The bands include the distributions of ten di!erent instances of the D"#$-U%-S&’%()$* test data sample.

26

Three Test Datasets for Validation
• Performance of anomaly detection analysis depends on unknown signal → Validation challenging 
• Use three different test datasets without signal: Large ΔY, MC, Up-Down-Sampling (below) 
• Valid for mJJ > 2900 GeV (more challenging background estimation for small mJJ)
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Results: Signal Agnostic Significances

• Observed significance of: 2 methods, 2 efficiencies, 7 mJJ regions, 3 features sets 

• Largest significance is 1.24𝜎 (1.26𝜎) & local deficit of −2.98𝜎 (−2.54𝜎) for SALAD (CURTAINs)
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(a) (b)

Figure 3: Observed significances (𝐿) for SALAD at the two di!erent selections, (a) 𝑀 = 0.1 and (b) 𝑀 = 0.02. The
significances are shown for all feature sets and 𝑁JJ SRs.

(a) (b)

Figure 4: Observed significances (𝐿) for CURTAIN! at the two di!erent selections, (a) 𝑀 = 0.1 and (b) 𝑀 = 0.02. The
significances are shown for all feature sets and 𝑁JJ SRs.

6.1 Signal enhancement

This section shows the ability of the analysis to enhance the potential signals, described in Section 3, when
they are injected into the SR. For this test, into each of the regions 2.2 – 3.2 TeV and 4.1 – 4.7 TeV, a count
of 𝑂 = 3

→
𝑃 simulated signal events were injected, with 𝑃 the number of background events in each region.

Thus, the expected significance given perfect knowledge of the data distribution over 𝑁JJ in the SR with no
systematic uncertainty, would be 3𝑄. As the analysis incorporates information from more features than
just 𝑁JJ, this significance can be enhanced for some signals.

In Figure 5, the lower end of the 𝑁JJ spectrum SALAD is better able to enhance signals than CURTAIN!,
whereas the opposite is true at the higher end of the 𝑁JJ spectrum. The two methods are therefore
complementary. The tighter selection is also observed to better enhance signal across both the methods.
Both the methods can be seen to return an observed significance 𝐿 > 3 for the 3𝑄 signal injection for
most of the injected signals. This reflects the significance enhancement ability of both the SALAD and
CURTAIN!. The analysis may not be sensitive to all possible signal models, and this is what is observed.
The 𝑅 , 𝑆21 feature set is seen to have the broadest sensitivity to new physics.

6.2 Exclusion limits

This section shows the ability of the analysis to exclude the potential signals, described in Section 3, using
the full 𝑇𝑈𝐿 prescription. Tight limits can be placed on a wide range of signal models, which indicates the
method’s broad sensitivity.

Figure 6 compares the limits set by the analysis to previous d"et [72] and diboson [28] searches. These
classical limits are taken from Ref. [4] and were originally obtained by recasting the analysis with the
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Results: Signal Specific Limits

• Set limits @ 95% CLs to 20 investigated signal models 
• Analysis has a broad performance on many different models (better and/or more general than…) 
• Similar performance for SALAD and CURTAINs
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Conclusion
• New Anomaly Detection Analysis on ATLAS Run 2 Data 
• Targeting dijet events with large radius jets 
• Using four-step analysis strategy (see below) 
• Results: 

• No significant excess observed 
• Set limits on many different signals
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Figure 1: This figure shows a schematic drawing of the analysis strategy with the consecutive steps shown in the
di!erent panels. The distribution shows the data which consists of a background and a potential signal which is
localized on the 𝐿JJ spectrum and (potentially) di!erent from the background in other features, here collectively
labeled as T . The first panel (a) shows how the SR and SB regions are defined on the 𝐿JJ spectrum. The second panel
(b) shows how the background is estimated in the SR. Then a classifier is trained between the estimated background
and the data in the SR. The third panel (c) shows the data after a cut is applied on the classifier output of each event,
thereby increasing the relative contribution of a potential signal. After this step, a bump hunt is performed in the 𝐿JJ
spectrum. The whole process is repeated with shifted regions SR and SB until the entire 𝐿JJ spectrum is covered.

5 Analysis method

The analysis employs weakly supervised machine learning to search for resonant signals, which appear as
localized peaks in the 𝐿JJ spectrum. The primary background arises from non-resonant d"et production
via the strong interaction. In addition to being resonant, a potential signal is expected to show distinct
properties in other observables, like jet substructure, compared with the background, enabling e!ective
di!erentiation.

The analysis strategy is structured into four steps, whereas the first three steps are explicitly depicted in
Figure 1:

1. Potentially signal-enriched (Signal Region, SR) and signal-depleted regions (Sideband, SB) are
defined.

2. Two di!erent methods — SALAD and CURTAIN!— use the signal-depleted regions to create
estimates of the background process in the signal-enriched region.

3. A weakly supervised machine learning classifier is trained to classify the estimated background from
data, and enhances the ratio of a potential signal to the background

4. A statistical inference is performed in the signal-enriched region.

Each step is briefly described in this overview, with more details in the following sections.

The analysis starts with the definition of the SR and SB. As potential signals are localized in the 𝐿JJ
spectrum, SR and SB are defined as collections of events with 𝐿JJ values in ranges on this spectrum.
Various mass hypotheses are systematically tested by iteratively shifting the SR and SB over a total of seven
combinations of regions, which cover the investigated 𝐿JJ spectrum. For each combination of regions the
entire analysis chain is independently executed, including the background estimations, the training and
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About me

• Second year postdoc at Berkeley Lab 
• Data analysis for CERN experiments since > 7 years 

• Physics: Higgs, Anomaly Detection 
• Deep Learning: Supervised, Unsupervised, Reinforcement 
• Computing: Fast O(TB) Data Processing & Computing Pipelines
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Anomaly Detection Strategies
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Used signal models

• Analysis is signal agnostic, but 20 signal models used as benchmarks: 

• Vector bosons: 𝑊′ → 𝑊′′𝑍′′ → qqqq 

• Pseudoscalar bosons: 𝐴0 → 𝐻′′𝑍′ → qqqq 

• Varying masses of parent and children particles

19

Ps,d
p,a,b

parent name

parent mass

spectrum width

decay channel

children masses
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Background Sculpting
20

Data Background Estimation

• If background estimation correlated with the regions: 
• Classifier gets sensitive to estimation itself (regions) 
• Sculpts false bump even if there is no signal
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A Word on Uninformative Features
• Uninformative features can decrease classifier sensitivity 
• This effect is architecture dependent (e.g. tree models vs neutral networks) 
• It is not clear a priori which features yield sensitivity

21

Figure 4: Test accuracy of a GBT
for varying proportions of removed fea-
tures, on our classification benchmark on
numerical features. Features are removed
in increasing order of feature importance
(computed with a Random Forest), and the
two lines correspond to the accuracy using
the (most important) kept features (blue) or
the (least important) removed features (red).
A score of 1.0 corresponds to the best score
across all models and hyperparameters on
each dataset, and 0.0 correspond to random
chance. These scores are averaged across
30 random search orders, and the ribbons
correspond to the 80% interval among the
different datasets.

a. Removing features b. Adding features

Figure 5: Test accuracy changes when removing (a) or adding (b) uninformative features. Fea-
tures are removed in increasing order of feature importance (computed with a Random Forest). Added
features are sampled from standard Gaussians uncorrelated with the target and with other features.
Scores are averaged across datasets, and the ribbons correspond to the minimum and maximum score
among the 30 different random search reorders (starting with the default models).

layer breaks rotation invariance. The fact that very different types of embeddings seem to improve
performance suggests that the sheer presence of an embedding which breaks the invariance is a key
part of these improvements. We note that a promising avenue for further research would be to find
other ways to break rotation invariance which might be less computationally costly than embeddings.

6 Discussion and conclusion

Limitation Our study leaves open questions for future work: which other inductive biases of
tree-based models explain their performances on tabular data? How would our evaluation change on
very small datasets? On very large datasets? What is the best way to handle specific challenges like
missing data or high-cardinality categorical features, for NNs and tree-based models? With these best
methods, how would the evaluation change including missing data?

Conclusion While each publication on learning architectures for tabular data comes to different
results using a different benchmarking methodology, our systematic benchmark, going beyond the
specificities of a handful of datasets and accounting for hyper-parameter choice, reveals clear trends.
On such data, tree-based models more easily yield good predictions, with much less computational

8

taken from [2207.08815]
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Classification of a Potential Signal (Specifics)

• Tested features of two AK10 jets (j): 
• Jet mass (Mj) 
• Jet substructure (τ21j, τ32j) 

• Networks: 3 x 64 ReLu, dropout (5%), Adam(lr=0.001), Early stopping (10 epochs) 
• Five-fold cross validation to effectively use all data for training

22

Scan three subsets: 

{Mj} {Mj, τ21j} {Mj, τ21j, τ32j}
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Validation Performed on all Test Datasets
• Each mJJ signal region validated on all test datasets (significance and spread < 1) 
• Results: Successful for mJJ > 2900 GeV 
• Reason: More challenging background estimation for small mJJ

23

(a) (b)

(c) (d)

Figure 11: Central values and spread of the local significances (Z) for (a, b) CURTAIN! and (c, d) SALAD at the two
di!erent selections, (a, c) 𝐿 = 0.1 and (b, d) 𝐿 = 0.02. Significances are shown for all feature sets and 𝑀JJ SR centers.
The bands include the distributions of ten di!erent instances of the D"#$-U%-S&’%()$* test data sample.
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Down-Up-Sampling (a) (b)

(c) (d)

Figure 11: Central values and spread of the local significances (Z) for (a, b) CURTAIN! and (c, d) SALAD at the two
di!erent selections, (a, c) 𝐿 = 0.1 and (b, d) 𝐿 = 0.02. Significances are shown for all feature sets and 𝑀JJ SR centers.
The bands include the distributions of ten di!erent instances of the D"#$-U%-S&’%()$* test data sample.
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Down-Up-Sampling
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Setting Limits (Signal Injection Procedure)

• Efficiency of anomaly detection usually depends on the amount of signal 
• The more signal, the more efficient the analysis (i.e. CWOLA) 

• To get upper limit, need to inject signal, and rerun the whole analysis chain until Nsig∝NCL95%

24

Standard Analysis Anomaly Detection

Analysis

Nsig = σ × ℒ × A × ϵ Nsig = σ × ℒ × A × ϵ(σ)

σ Nsig
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Results: Possible Signal Enhancement
• Inject 3σ signals (inclusive) into signal region & measure significance after analysis 
• Sensitivity to many signals is improved by analysis 
• SALAD (CURTAINs) better for low-mass (high-mass); Tighter efficiency (2%) more sensitive

25

(a) (b)

Figure 5: Signal injection tests with T = 𝐿 , 𝑀21 at 𝑁 = 0.1 in (a) and 𝑁 = 0.02 in (b) for both the SALAD and
CURTAIN! for all simulated signal models. The signal models are described in detail in Section 3. The local
observed significance (𝑂) is shown as reported by the analysis pipeline after running the analysis with 3𝑃 of signal
injected into the data in the 𝑄JJ SR centered on the di!erent signals. The errors show one standard deviation on the
reported significance as calculated by bootstrapping the signal injection procedure.

new signal cases. The new analysis sets stricter limits than the existing d"et search on signal models with
daughter masses high enough such that 2𝐿

𝑀T
> 0.4 (signal models: 𝑅 →𝑁

3000,400,400, 𝑅 →𝑁

3000,200,400, 𝑅 →𝑁

3000,80,400)
and slightly weaker limits on signal cases with daughter masses such that 2𝐿

𝑀T
< 0.4 (signal models:

𝑅
→𝑁

3000,200,200, 𝑅 →𝑁

3000,80,200, 𝑅 →𝑁

3000,80,80). This is because the d"et search uses 𝑆 = 0.4 jets, and therefore
performs worse for cases where 2𝐿

𝑀T
> 0.4 and the resulting jets are too large to be contained inside the

𝑆 = 0.4 jet radius. The diboson search succeeds for signals with daughter masses close to the SM W mass
𝑅

→𝑁

3000,80,80 but fails for other masses.

In Figure 6 both the SALAD and CURTAIN! set similar limits on the signal cross-section at both the ends
of the 𝑄JJ spectrum. The same is true for all selections, feature sets and signals. In Figure 7 the 𝐿 , 𝑀21
feature set is able to set the strictest limits on the signal cross-section across almost all signals and SRs.
This is true for both the SALAD and CURTAIN! methods. At the 𝑁 = 0.1 selection in the 2.6 ↑ 3.2 TeV
SR, the 𝐿 feature set results in the strictest limits on the signal cross-section across almost all signals due
to the deficit observed in Figure 2, which only appears in this region for this feature set. Otherwise, the
𝐿 , 𝑀21 feature set most often sets the strictest limits in all regions and selections for both the methods.

It is interesting that the 𝐿 , 𝑀21, 𝑀32 feature set is not significantly better than the other two feature sets for
topologies, like the BSM 𝑅

→→
/𝑂

→→
↓ 𝑇𝑇𝑇 decays, that are expected to have a boosted 3-prong structure.

This may indicate that 𝑀32 does not add enough information for these topologies to be useful for classification,
and would be an interesting area for future study.

The analysis uses the full 𝑈𝑉𝑂 method to set limits, and so direct comparisons cannot be made to the
limits set by the previous weakly supervised d"et search which used a di!erent approach [4]. However, the
previous weakly supervised search used the 𝐿 feature set and so this should have similar sensitivity to
the previous search. Given that the 𝐿 , 𝑀21 feature set generally improves the sensitivity of the analysis, it
represents an improvement on the previous weakly supervised search. In a weakly supervised anomaly
detection search, it is generally not known beforehand which features are most sensitive to a potential signal.
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Results: Comparison of Features

• Different feature sets have different sensitivity (more not always better) 

• Strictest limits are observed (mostly) for the 𝑀, 𝜏21 feature set with ε = 2% 

• Scan over different feature sets is one of the strengths of this analysis
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Figure 7: Comparison of the 95% CL upper limits on 𝐿(𝑀𝑀 → 𝑁 → 𝑂𝑃) for di!erent feature sets. All limits use the
CURTAIN! method with the 𝑄 = 0.02 selection. The signal models are detailed in Section 3.

7 Conclusions

A signal agnostic anomaly detection search is described for narrow-width resonances beyond the SM
that produce a pair of jets. The search uses 139 fb↑1 of 𝑀𝑀 collisions at

↓
𝑅 = 13 TeV recorded during

2015—2018 with the ATLAS detector at the LHC. The analysis is designed to be sensitive to a broad range
of new physics e!ects and targets resonances on the 𝑆JJ spectrum between 2.6 TeV to 5.0 TeV. After a
selection through a weakly supervised classier, a bump hunt is performed to extract potential local excesses.
Two di!erent strategies based on machine learning are used to create background estimates which are
utilized in the classifier training.

The search extends the previous weakly supervised search performed by the ATLAS experiment in various
ways. The direct background estimate, performed using either the SALAD reweighting technique or the
CURTAIN! morphing method, allows more features of the events to be used in the search than before.
Specifically, this search uses jet substructure features, which are related to the number of prongs in the
jets, thereby particularly enhancing the sensitivity to boosted massive particles. Additional benchmark
signal models are integrated to probe the sensitivity of the search. New validation methods are developed
to address the challenge of developing a blind weakly supervised AD search.

No significant excess is observed in the data, consistent with the validation on the test data samples. To
illustrate the sensitivity of the analysis, upper limits at 95% CL are set on the production cross-section for
a set of signal benchmark models. These limits are compared between the two background estimation
methods and two existing searches. The search is sensitive to many potential signal models which promote
resonant d"et final states, such as BSM models including vector bosons 𝑇 ↔ or pseudoscalar bosons 𝑁

0.
Unlike most searches, when a signal is injected into the data, the event selection changes, and so the entire
process must be rerun every time a new signal is injected at a new cross-section. The two background
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