

Machine Learning-Driven Anomaly Detection in Dijet Events with ATLAS

based on 2502.09770 (submitted to PRD)

Dennis Noll

June 16, 2025 AD4HEP

Motivation

- Many more BSM models than possible analyses: **Need model-agnostic searches!**
- This analysis: Signal-agnostic mJJ Bump Hunt using Many Features
- Previous analysis: ATLAS CWOLA Round 1 [2005.02983] (using less features)

 m_{jj}

1. Definition of Regions

 m_{jj}

 m_{jj}

 m_{jj}

- Events with \geq 2 large radius jets (anti-kt, R=1) with low rapidity difference
- Signal agnostic scan with 300GeV step size over whole m_{jj} range
- Signal Regions (SR): 600GeV; Background regions (SB): 600GeV below & above

- Events with \geq 2 large radius jets (anti-kt, R=1) with low rapidity difference
- Signal agnostic scan with 300GeV step size over whole m_{jj} range
- Signal Regions (SR): 600GeV; Background regions (SB): 600GeV below & above

- Events with \geq 2 large radius jets (anti-kt, R=1) with low rapidity difference
- Signal agnostic scan with 300GeV step size over whole m_{jj} range
- Signal Regions (SR): 600GeV; Background regions (SB): 600GeV below & above

- Events with \geq 2 large radius jets (anti-kt, R=1) with low rapidity difference
- Signal agnostic scan with 300GeV step size over whole m_{jj} range
- Signal Regions (SR): 600GeV; Background regions (SB): 600GeV below & above

- Events with \geq 2 large radius jets (anti-kt, R=1) with low rapidity difference
- Signal agnostic scan with 300GeV step size over whole m_{jj} range
- Signal Regions (SR): 600GeV; Background regions (SB): 600GeV below & above

- Events with \geq 2 large radius jets (anti-kt, R=1) with low rapidity difference
- Signal agnostic scan with 300GeV step size over whole m_{jj} range
- Signal Regions (SR): 600GeV; Background regions (SB): 600GeV below & above

Background Estimation Two different methods

Background Estimation Two different methods

Classification of a Potential Signal

- CWOLA method [1708.02949]: Training of mixed samples (S+B vs B) converges to optimal classifier
- Used Features: Jet mass (M_j) & Jet substructure (T_{21j} , T_{32j}) of two AK10 jets (j) • Used Features: Jet mass (M_j) & Jet substructure (T_{21j} , T_{32j}) of two AK10 jets (j)

Cut on the classifier and Distribution

- Cut on classifier output to increase signal purity / suppress background
- Cut on different background efficiencies (FPR) using 2% and 10%

Ensembling strategy

- Random fluctuations of single CWOLA classifier lead to disjunct phase space after cut
- Use ensemble of 10 classifiers, make cut on each classifier, take mean of number of events

Ensembling strategy

- Random fluctuations of single CWOLA classifier lead to disjunct phase space after cut
- Use ensemble of 10 classifiers, make cut on each classifier, take mean of number of events

Ensembling strategy

- Random fluctuations of single CWOLA classifier lead to disjunct phase space after cut
- Use ensemble of 10 classifiers, make cut on each classifier, take mean of number of events

Inference: Fit and Likelihood

- If CWOLA increases purity of an existing signal, there will be a bump in the m_{jj} spectrum:
 1. Fit exponential in side bands (up to four-parametric exponential, iterative procedure)
 - 2. Compare sum of counts in signal region (SR)

- Each bin count has two uncertainties:
 - Poisson of counts
 - Classifier ensemble

10

- Each bin count has two uncertainties:
 - Poisson of counts
 - Classifier ensemble

- Each bin count has two uncertainties:
 - Poisson of counts
 - Classifier ensemble

- Each bin count has two uncertainties:
 - Poisson of counts
 - Classifier ensemble

- Each bin count has two uncertainties:
 - Poisson of counts
 - Classifier ensemble
- Largest uncertainties in SR:
 - 1. Bkg est: Fit
 - 2. Data: Poisson
 - 3. Data: Ensemble
- (Limits without signal uncertainties)

Three Test Datasets for Validation

- Performance of anomaly detection analysis depends on unknown signal \rightarrow Validation challenging
- Use three different test datasets without signal: Large ΔY, MC, **Up-Down-Sampling (below)**

Three Test Datasets for Validation

- Performance of anomaly detection analysis depends on unknown signal \rightarrow Validation challenging
- Use three different test datasets without signal: Large ΔY, MC, Up-Down-Sampling (below)
- Valid for m_{JJ} > 2900 GeV (more challenging background estimation for small m_{JJ})

Results: Signal Agnostic Significances

Results: Signal Specific Limits

- Set limits @ 95% CLs to 20 investigated signal models
- Analysis has a broad performance on many different models (better and/or more general than...)
- Similar performance for SALAD and CURTAINs

Conclusion

- New Anomaly Detection Analysis on ATLAS Run 2 Data
- Targeting dijet events with large radius jets
- Using four-step analysis strategy (see below)
- **Results**:
 - No significant excess observed
 - Set limits on many different signals

 m_{jj}

Backup

About me

- Second year postdoc at Berkeley Lab
- Data analysis for CERN experiments since > 7 years
- **Physics**: Higgs, Anomaly Detection
- **Deep Learning**: Supervised, Unsupervised, Reinforcement
- **Computing**: Fast O(TB) Data Processing & Computing Pipelines

Semi Supervised-

- Data with some labels
- Use potential signal models
 as prior

Challenge: Need to choose
 (potential) signal models

-Semi Supervised-

- Data with some labels
- Use potential signal models as prior

Challenge: Need to choose
 (potential) signal models

Weakly Supervised-

- Data with noisy labels
- Use domain knowledge to place weak assumptions on the data

$$R(x) = \frac{p_{data}}{p_{bg}}$$

Challenge: Weak
 assumptions need to be good

Semi Supervised-

- Data with some labels
- Use potential signal models as prior

 Challenge: Need to choose (potential) signal models

Weakly Supervised

- Data with noisy labels
- Use domain knowledge to place weak assumptions on the data

$$R(x) = \frac{p_{data}}{p_{bg}}$$

Challenge: Weak
 assumptions need to be good

-Unsupervised[.]

- Data without labels
- Often uses a "clever trick", like e.g. compressing SM-like events (Autoencoder)

Challenge: Get anomalous events but often no background estimate

Choose your degree of supervision

Semi Supervised-

- Data with some labels
- Use potential signal models as prior

 Challenge: Need to choose (potential) signal models

Weakly Supervised-

- Data with noisy labels
- Use domain knowledge to place weak assumptions on the data

$$R(x) = \frac{p_{data}}{p_{bg}}$$

Challenge: Weak
 assumptions need to be good

-Unsupervised[.]

- Data without labels
- Often uses a "clever trick", like e.g. compressing SM-like events (Autoencoder)

Challenge: Get anomalous events but often no background estimate

Choose your degree of supervision

Anomaly Detection in the Bigger Picture

Anomaly Detection in the Bigger Picture

Used signal models

- Analysis is signal agnostic, but 20 signal models used as benchmarks:
 - Vector bosons: $W' \rightarrow W''Z'' \rightarrow qqqq$
 - Pseudoscalar bosons: $A_0 \rightarrow H''Z' \rightarrow qqqq$
 - Varying masses of parent and children particles

 W'/A_{c}

Background Sculpting

- If background estimation correlated with the regions:
 - Classifier gets sensitive to estimation itself (regions)
 - Sculpts false bump even if there is no signal

Data

Background Estimation

A Word on Uninformative Features

- Uninformative features can decrease classifier sensitivity
- This effect is architecture dependent (e.g. tree models vs neutral networks)
- It is not clear a priori which features yield sensitivity

Classification of a Potential Signal (Specifics)

- Tested features of two AK10 jets (j):
 - Jet mass (M_j)
 - Jet substructure (T_{21j}, T_{32j})

Scan three subsets: {Mj} {Mj, T21j} {Mj, T21j, T32j}

- Networks: 3 x 64 ReLu, dropout (5%), Adam(Ir=0.001), Early stopping (10 epochs)
- Five-fold cross validation to effectively use all data for training

AD4HEP | Dennis Noll | June 16, 2025

Validation Performed on all Test

- Each m_{JJ} signal region validated on all test dataset
- Results: Successful for mJJ ≥ 2900 GeV
- Reason: More challenging background estimati

Setting Limits (Signal Injection Procedure)

Standard Analysis

Anomaly Detection

$$N_{sig} = \sigma \times \mathscr{L} \times A \times \epsilon$$

$$N_{sig} = \sigma \times \mathscr{L} \times A \times \epsilon(\sigma)$$

- Efficiency of anomaly detection usually depends on the amount of signal
 - The more signal, the more efficient the analysis (i.e. CWOLA)
- To get upper limit, need to inject signal, and rerun the whole analysis chain until $N_{sig} \propto N_{CL95\%}$

$$\sigma \longrightarrow \Lambda$$
analysis N_{sig}

AD4HEP | Dennis Noll | June 16, 2025

Results: Possible Signal Enhancement

- Inject 3σ signals (inclusive) into signal region & measure significance after analysis
- Sensitivity to many signals is improved by analysis
- SALAD (CURTAINs) better for low-mass (high-mass); Tighter efficiency (2%) more sensitive

Results: Comparison of Features

- Different feature sets have different sensitivity (more not always better)
- Strictest limits are observed (mostly) for the *M*, τ_{21} feature set with $\epsilon = 2\%$
- Scan over different feature sets is one of the strengths of this analysis

