

Interface between BSM Scenarios and Neutrino Event Generators

William Jay – MIT

SBN Experiment-Theory Workshop Santa Fe, New Mexico 2-5 April 2024

My perspective

1									1
i.	.d8b.	.088b.	db db	d88888b	db	db	d88888b	.d8888.	i
i.	d8' `8b	dBP Y8	88 88	, 88,	88	88	88.	88' YP	i I
1	8800088	8P	8800088	88	88	88	8800000	`8bo.	1
1	88~~~88	8b	8888	88	88	88	88~~~~	`Y8b.	1
1	88 88	Y8b d8	88 88	.88.	88bcoc.	88bcoc.	88.	db 80	1
1	YP YP	`Y88P'	YP YP	Y888888P	Y88888P	Y88888P	Y88888P	`8888Y'	1
1									1
+									-+
1									1
1	, d8988888888888888888888888888888888888								1
		.d8888	88888888	888888888	88888888	88888b.			.!
1		18888888	88888888	888888888	88888888	88888888	85.		
1	88888888888888888888888888888888888888								
1	Y88688363638388888888888888888888888888								
Y98968888888888888888888888888888888888									
		Y88	1818181818	8888888888	88888888	888888888	85858585	5555	
			Y8588888	8888888888	88888888	585P Y8	85858585	85858	
			199900	8888 888	8 88Y'	Y.	8383838383	88888	.!
1			88888	8888888888	88888886	•	13838383	58888.	.!
1		.0	1997959999	868686866	83858585	50.	10000000	556565	.!.
1		.058	88888888	888888888	88888888	68680	83838385	555555	
1		.05855	88888888	888888888	88888888	88888	83838385	0888880	.!
		4000000	08080808	85858585858	0000000000	00000	83838383 V0000000	00000	
		0060600	100000000			00000	10000000	00000	11
		100000	40000	0000000000		0000I'	0000	0000	11
		5050° 2020	400000	0000000000		500F 59D	000	900 9V	
	4888 .488888888888888888888888888888888								
	1	0. 9000 906 09V	00000000	0000000000		000	000	or b	
		100 000 1898 '8'	121212121	888888888	888888888	888	8	R	
		8888	82828283	82828282828	88888888	RRP		8	
		8888	82828282	RRRRP	VRREARR	20. 20		- -	
Π.		d8898	88888888	8888	Y8E8E8	P			-i -
7		89898	88888888	888P	YE88P				1
- F		d88888	88888888	P	Y8P				i
- i		888888	888P		8				i
ī.,		d888P							-i -
ī.,									i.
+									-+
1									1
1	Version	n: (:56)							
1	Author	s: Joshu	a Isaacs	on, Willi	am Jay, I	Alessand	ro Lovat	ο,	
	Pedro A. Machado, Noeni Rocco								
1	i								
1	Undergraduate Student Contributions:								
1	Diego Lopez Gutierrez, Sherry Wang, Russell Farnsworth								
1 1									
+==									=+

Isaacson [WJ] et al. *PRC* 103 (2021) 1, 015502 [arXiv:2007.15570]

Isaacson [WJ] et al. PRD107 (2023) 3, 033007 [arXiv:2205.06378]

CKM Metrology

Inclusive scattering $ep \rightarrow e'X$ $W^{\mu\nu} \sim \langle p \, | \, J_{\mu}(q) J_{\nu}(-q) \, | \, p \rangle$

My perspective

1									
1	.d8b.	.088b.	db db	d888888b	db	db	d88888b	.d8888.	
1	d8' `8b	d8P Y8	88 88	.88,	88	88	88'	88' YP	
1	8800088	8P	8800088	88	88	88	8800000	`8bo.	
1	88~~~88		8888	88	88	88	88~~~~	`Y8b.	
1	88 88	Y8b d8	88 88	.88.	88bcoc.	88bcoc.	88.	db 8D	
i -	YP YP	`Y88P'	YP YP	Y888888P	Y88888P	Y88888P	Y88888P	`8888Y'	
i -									
+									
1									
1	.d89868988668888888888888888888888888888								
!	.d38368888888888888888888888888888888888								
1	. 1888888888888888888888888888888888888								
!	86888888888888888888888888888888888888								
!	Y8888888888888888888888888888888888888								
1	Y98989898989898989898989898989898989898								
1		198	88888888	8989999999	58585858	69696969	89898989	8888	
!			18181888	8888888888	85858585	588P Y8	55658585	85858	
1.			100000	8888 888	5 88Y'	Ŷ	000000000000000000000000000000000000000	85858	
1			.088888	8888888888	58585850		19898989	88888.	
1		.d	1818181818	8888888888	83838888	5D.	8888888	888888	
1		.058	88888888	888888888	58585858	68686	55656555	888888	
1		.08888	88888888	888888888	58585858	88888	83838385	0888880	
1		489898	88686868	8888888888	888888888	88888	83838383	85858	
1		d989898	88888888	8888888888	888888888	88888	19898989	88888	
1		08989896	. 0998	8989899999	58585858	585812	8385	8585	
1		8888P	.08888	8888888888	8858585858	588P	885	858	
1	888P . 4988888888888888888888888888888888888								
1		0. 9850 W00	000000000	858585858		5 5 505	065	87 0	
1		185 058	18181818	8888888888	888888888	586	85	8	
1		0. 0000	00000000	000000000		000		°.	
1		0000	00000000	0000000000 0000n	V0000000	56P 50		•	
1		10000	00000000	8888r 0909	1000000	BP' D			
1		03636	000000000	0000	100000				
1		493929	000000000	0001 D	18881				
		000000			101/				
		.10000	cear		0				
i.									
+									
1									
i	Versio	n: (:56)	1						
Ĩ.	Authors: Joshua Isaacson, William Jav. Alessandro Lovato.								
i i	Pedro A. Machado, Noeni Rocco								
Ĩ.									
i -	Undergraduate Student Contributions:								
i	Diego Lopez Gutierrez, Sherry Wang, Russell Farnsworth								
Ĩ.									
+===									=+[

Isaacson [WJ] et al. *PRC* 103 (2021) 1, 015502 [arXiv:2007.15570]

Isaacson [WJ] et al. PRD107 (2023) 3, 033007 [arXiv:2205.06378]

Outline

- Simulating the Standard Model
- Simulating beyond the Standard Model
- Examples
- Conclusions

Simulating the Standard Model

Break the problem into well-defined theoretical pieces

$$d\sigma = \left(\frac{1}{|v_A - v_\ell|} \frac{1}{4E_A^{\text{in}}E_\ell^{\text{in}}}\right) \times |\mathcal{M}|^2 \times \prod_f \frac{d^3 p_f}{(2\pi)^3} (2\pi)^4 \delta^4 \left(k_A + k_\ell - \sum_f p_f\right)$$
$$d\sigma = \left(\text{flux}\right) \times \left(\text{matrix element}\right) \times \left(\text{phase space}\right)$$

The Matrix Element

Step 1: Factorization of leptonic and hadronic physics

Leptonic tensor: Calculable analytically

in SM or BSM scenario.

 \Longrightarrow More on this later.

Hadronic tensor:

Complicated multi-scale object, encoding all the hadronic/nuclear physics $|\Psi_0\rangle$: Initial state (say, $^{40}\text{Ar}~\text{or}~\text{H}_2\text{O})$

 $|\Psi_f\rangle$: Final state (nuclear remnant + outgoing pions, kaons, etc...)

The Matrix Element Step 2: Factorization of primary vertex

 \mathscr{V} : Primary-interaction vertex \mathscr{P} : Time evolution to produce observed final states

"Sum coherently over all possible intermediate states p'." -Quantum mechanics

$$|\mathcal{M}(\{k\} \to \{p\})|^2 = | \sum_{p'} \mathcal{V}(\{k\} \to \{p'\}) \times \mathcal{P}(\{p'\} \to \{p\}) |^2$$

This is exact, but quite complex. \implies Factorize the problem.

The Matrix Element Step 2: Factorization of primary vertex

 \mathscr{V} : Primary-interaction vertex \mathscr{P} : Time evolution to produce observed final states

$$|\mathcal{M}(\{k\} \to \{p\})|^2 \simeq \sum_{p'} |\mathcal{V}(\{k\} \to \{p'\})|^2 \times |\mathcal{P}(\{p'\} \to \{p\})|^2$$

Treat the sum incoherently. Handle constituents with theoretical care.

(Analogy to physics at LHC: similar to dressing hard-scattering cross sections with parton showers)

The Primary-interaction Vertex Step 3: Choose factorization scheme and DOF

- Take nucleons as initial-state DOF
- Take electroweak currents from nuclear EFT:

$$J^{\mu}(q) = \sum_{i} j^{\mu}_{i}(q) + \sum_{i < j} j^{\mu}_{ij}(q) + \cdots$$

• Choose a factorization scheme: the impulse approximation

$$|\Psi_f\rangle = |\mathbf{p}\rangle \otimes |\Psi_f^{A-1}\rangle$$

Spatial distribution from nuclear many-body theory: QMC. Quasi-exact.

(among others)

"For momentum transfer $|\mathbf{q}| \gtrsim 400 \text{ MeV}$, external probes resolve individual nucleons."

Z. Tabrizi EFT approach to vA interactions T15:00	berg stic, 2-body currents any-body approaches	K. Niewczas Single- and N-nucleon knockout within many-body approaches F9:00
--	--	---

The Primary-interaction Vertex Step 3: Choose factorization scheme and DOF

 $W_{N}^{\mu\nu} = \langle \Psi_{0} | J^{\mu\dagger}(q) | \Psi_{f} \rangle \langle \Psi_{f} | J^{\nu}(q) | \Psi_{0} \rangle$

With the impulse approximation $|\Psi_f\rangle = |\mathbf{p}\rangle \otimes |\Psi_f^{A-1}\rangle$,

in vA interactions

W12:00

from LQCD

Th9:00

Hardonic Validation: eA-scattering

Constraining hadronic uncertainties with electron scattering

- Experimental data: e¹²C scattering at 1299 MeV, e' fixed angle 37.5°
- **New**: Achilles now includes resonance production in dynamical coupled channel (DCC) model

R.M. Sealock et al Electroexcitation of the Δ (1232) in nuclei *PRL* 62 (1989) 1350-1353

Noah Steinberg Postdoc @ FNAL

What might BSM mean? For example, dark neutrino portal

- Suppose the existence of a
 - Dark neutrino N_D
 - Dark vector boson Z_D
- Suppose $m_{N_D} > m_{Z_D}$ so that $N_D \to Z_D + \nu_i \, \text{is possible}$
- Suppose $m_{Z_D} < 2 m_{\!\mu}$ so that Z_D decays to electrons, light neutrinos
- This setup can lead to excess lowenergy electrons, e.g., in MiniBoone

Simulating these theories is important to SBN program and

beyond

Bertuzzo, Jana, Machado, Funchal

PRL 121 (2018) 24, 241801

[arXiv:1807.09877]

Leptonic Currents In the SM and Beyond

Leptonic Currents In the SM and Beyond

$$\left| \mathcal{M} \right|^2 \propto L_{\mu\nu} \frac{1}{P^2} W^{\mu\nu} \quad \mathbf{v}_{\ell} \quad \overbrace{\mathbf{v}_{\ell}}^{\ell} \quad \overbrace{\mathbf{v}_{\ell}}^{\ell} \quad \overbrace{\mathbf{v}_{\ell}}^{\text{Final-state}} \quad Final-state \text{particles}$$

Ex: Charged-current scattering (unpolarized nucleus) in SM

$$L_{\mu\nu} = 2\left(p'_{\mu}p_{\nu} + p_{\mu}p'_{\nu} - p' \cdot pg_{\mu\nu} - i\epsilon_{\mu\nu\rho\alpha}p^{\alpha}p'^{\beta}\right)$$

Factorization of $|\mathcal{M}|^2$ becomes unwieldy for several gauge bosons (γ, Z, Z')

$$d\sigma = L^{(\gamma\gamma)}_{\mu\nu}W^{(\gamma\gamma)\mu\nu} + L^{(\gamma Z)}_{\mu\nu}W^{(\gamma Z)\mu\nu} + L^{(Z\gamma)}_{\mu\nu}W^{(Z\gamma)\mu\nu} + \dots$$

Automatic Amplitudes In the SM and Beyond

Factorize the amplitude into products of currents

$$\mathscr{M} = \sum_{i} L^{(i)}_{\mu} W^{(i)\mu}$$

- Automate construction of the leptonic current in SM, BSM
- Build cross section from amplitudes

$$d\sigma \sim \left|\sum_{i} L_{\mu}^{(i)} W^{(i)\mu}\right|^2$$

Automatic Amplitudes In the SM and Beyond

Context: $t\bar{t}$ production at LHC $gg \rightarrow t\bar{t} \rightarrow b\bar{b}e\nu_e\mu\nu_\mu$

$W_{e} = b^{e}$

Berends and Giele

Eur.Phys.J.C 75 (2015

S. Höche et al.

[arXiv:1412.6478]

Nucl.Phys.B 306 (1988) 759-808

Keys for success

- 1. Automatic generation of tree-level amplitudes
- 2. Preservation of spin correlations in heavy decay cascades
- 3. Automatic generation of nbody phase space

Automatic Leptonic Currents In the SM and Beyond

Berends and Giele Nucl.Phys.B 306 (1988) 759-808

S. Höche et al. *Eur.Phys.J.C* 75 (2015) [arXiv:1412.6478]

J. Isaacson et al. PRD 105 (2022) 9, 096006 [arXiv:2110.15319]

- Recursive definition for (off-shell) currents:
 - (current) = (propagator) $\times \sum$ (vertex) \times (sub-currents)

Automatic Leptonic Currents

Berends and Giele Nucl.Phys.B 306 (1988) 759-808

Leptonic limitations (current Achilles implementation)

- Scalar, spin-1/2, or spin-1 particles
 - Spin > 1 ⇒ Write down/implement relevant external states and propagators
- Spin-1 probes of nucleus
 - Spin \neq 1 \implies Expand nuclear model with relevant form factors
- Color-singlet particles
 - Color-charged particles: breaks assumed description via hadronic DOF at low energies
 - Most (all?) realistic BSM models are neutral under QCD

Eur.Phys.J.C 75 (2015) [arXiv:1412.6478]

J. Isaacson et al. PRD 105 (2022) 9, 096006 [arXiv:2110.15319]

S. Höche et al.

Preserving spin correlations In the SM and Beyond

- Examples:
 - Top-quark decays in LHC physics
 - τ decays in neutrino scattering

J. Collins Nucl.Phys.B 304 (1988)794-804

> S. Höche et al. *Eur.Phys.J.C* 75 (2015) [arXiv:1412.6478]

P. Richardson JHEP 11 (2001) 029 [arXiv:hep-ph/0110108]

J. Isaacson et al. PRD 105 (2022) 9, 096006 [arXiv:2110.15319]

Preserving spin correlations In the SM and Beyond

Big idea: Momenta are generated according to

$$\left(\rho_{\kappa_{1}\kappa_{1}'}^{1}\rho_{\kappa_{2}\kappa_{2}'}^{2}\right)\times\left(\mathscr{M}_{\kappa_{1}\kappa_{2};\lambda_{1}\cdots\lambda_{n}}\mathscr{M}_{\kappa_{1}'\kappa_{2}';\lambda_{1}'\cdots\lambda_{n}'}^{*}\right)\times\prod_{i}D_{\lambda_{i},\lambda_{i}'}^{i}$$

Incoming spindensity matrices

(Amplitude)²

Outgoing-particle decay matrix

- Decay unstable particles randomly
- Develop chain of decays until final particles are stable
- Recursively determine outgoing-particle decay matrix, constrained by conservation of probability

J. Collins Nucl.Phys.B 304 (1988)794-804

> S. Höche et al. *Eur.Phys.J.C* 75 (2015) [arXiv:1412.6478]

P. Richardson JHEP 11 (2001) 029 [arXiv:hep-ph/0110108]

J. Isaacson et al. PRD 105 (2022) 9, 096006 [arXiv:2110.15319]

Examples

Neutrino tridents $\nu_{\mu}^{12}C \rightarrow \nu_{\mu}e^+e^-X$

Isaacson et al. PRD 105 (2022) 9, 096006 [arXiv:<u>2110.15319]</u>

Example of the pipeline using Achilles

Motivation:

- Proof-of-concept involving interference between interactions with γ , Z.
- Proof-of-concept for generic BSM interface
- Important background for BSM explanations of the MiniBooNE excess.
- Demonstrate uses of tools developed by LHC event generation community: Sherpa, Comix, FeynRules, UFO files

Results

• First fully differential results for trident production in the quasielastic region

Correlated τ decays

Example of the pipeline using Achilles

Motivation:

- DUNE: $\mathcal{O}(100s) \, \nu_{\tau}$ events / year
- Polarized $\tau \Longrightarrow$ final-state correlations
- Standard Model predicts:
 - τ polarization perpendicular to the lepton-scattering plane vanishes
 - τ polarization components within the lepton-scattering plane do <u>not</u> vanish
- Other generators have often treated ν_{τ} interactions as for $\nu_e, \nu_{\mu} \rightarrow$ "outgoing τ as LH only"

Results

- First fully differential predictions for ν_{τ} scattering at DUNE energies, including all spin correlations and all τ decay channels
- Calculated using generic interface between Achilles and Sherpa
- Correlations between production and decay are *automatically* maintained

Isaacson et al. PRD 108 (2023) 9, 093004 [arXiv:2303.08104]

Correlated τ decays

Example of the pipeline using Achilles

Momentum Fraction Distributions

- Benchmarking done against analytic results in collinear ($p_{\tau} \rightarrow \infty$) limit, monochromatic beams
- Final results calculated using realistic DUNE fluxes

Isaacson et al. PRD 108 (2023) 9, 093004 [arXiv:2303.08104]

Neutrino Dark Sector

Example of the pipeline using Achilles

- Simulation of full phase space including spin correlations
- Allows for separation of Dirac and Majorana cases

Image courtesy MicroBooNE using Achilles

Neutrino Dark Sector

Example of the pipeline using Achilles

- Simulation of full phase space including spin correlations
- Allows for separation of Dirac and Majorana cases

Image courtesy MicroBooNE using Achilles

Bertuzzo, Jana, Machado, Funchal PRL 121 (2018) 24, 241801 [arXiv:<u>1807.09877]</u>

400

Energy of leading lepton (PRELIMINARY)

0

0

200

600

800

1000

 E_e (MeV)

Summary / Conclusions Standardizing for Success

Leptonic currents

- SM and BSM models have many interactions
- Leverage existing implementations (e.g., Sherpa, Comix)
- Ensures common definition (e.g., of a BSM model) across generators

Hadronic currents

- νA scattering involves many hadronic/nuclear inputs
- Desirable to constrain as many "moving pieces" as possible using LQCD, ab initio nuclear manybody theory
- Hadronic modeling inevitable in some areas
 - Must be able to quantify uncertainty from "reasonable" variations
 - E.g., in situ parameter variation for uncertainty in primary-interaction vertex
 - Mention connections to vector of weights in NuHepMC standard
- Goal: rapid iteration of comparisons between predictions from different generators

Backup

Hadronic currents

From ab initio nuclear theory and lattice QCD

$$W^{\mu} = \langle \psi_{f}^{A} | J^{\mu}(q) | \psi_{0}^{A} \rangle$$

$$\rightarrow \sum_{k,i} \left[\langle \psi_{f}^{A-1} | \otimes \langle k | \right] | \psi_{0}^{A} \rangle \times \langle p + q | j_{i}^{\mu}(q) | k \rangle$$

Overlap with final nuclear state in impulse approximation

- Spectral function $\sim |\operatorname{overlap}|^2$
- Calculable in *ab initio* nuclear many-body theory

Single-nucleon form factor

- Calculable in LQCD
- LQCD calculations are quickly approaching full systematic control

Achilles: Comparison to experiment

PRD 107 (2023) 3, 033007 [arXiv:2205.06378]

J. S. O'Connell *et al.*, Phys. Rev. C **35**, 1063 (1987). R. M. Sealock *et al.*, Phys. Rev. Lett. **62**, 1350 (1989). D. Zeller, Investigation of the structure of the C-12 nucleus by high-energy electron scattering, Other thesis, Karlsruhe University, 1973.

Beyond firsts peak: Neglected MEC and resonance contributions

Good agreement = Validation of initial model for QE interaction

W.I. Jay - MIT

Achilles: Comparison to experiment

PRD 107 (2023) 3, 033007 [arXiv:2205.06378]

CLAS and $e4\nu$ collaborations Nature 599 (2021) 7886, 565-570

- Inclusive e-C hadronic cross section
- Analysis by $e4\nu$ to mimic kinematic setup for QE νA scattering

 $E_{\rm QE} = \frac{2m_N\epsilon + 2m_NE_\ell - m_\ell^2}{2\left(m_N - E_\ell + p_\ell\cos\theta_\ell\right)}$

FIG. 4: Comparison of the quasielastic energy reconstructed for an electron beam of 1159 MeV. Data is taken from Ref. [69]. The definition of E_{QE} can be found in Eq. 31. The red dashed vertical line marks the true beam energy.

- Low E_{OE} : MEC and resonance contributions
- High E_{OE} : interference effects (neglected)

Achilles: Comparison to experiment

CLAS and $e4\nu$ collaborations Nature 599 (2021) 7886, 565-570

PRD 107 (2023) 3, 033007 [arXiv:2205.06378]

E_{cal} = "Calorimetric energy" = "sum of final-state energies"

Achilles Intranuclear Cascade (INC) $|\mathcal{M}(\{k\} \to \{p\})|^2 \simeq \oint_{p'} |\mathcal{V}(\{k\} \to \{p'\})|^2 \times |\mathcal{P}(\{p'\} \to \{p\})|^2$

The quantum mechanical scattering model:

- Utilizes measured NN cross sections, e.g., from from SAID database with GEANT4 or NASA parameterization
- Scatters probabilistically according to the impact parameter: $P(b) = \exp(-\pi b^2/\sigma)$

 $\mathbf{\mathfrak{S}} \lambda^{-1} = \rho \sigma$ for the mean free path λ

 ${\bf \ensuremath{\boxtimes}}$ Total probability integrates to the cross section σ

• Incorporates Pauli blocking and formation zone to constrain possible scatterings

Achilles Intranuclear Cascade (INC) $|\mathcal{M}(\{k\} \to \{p\})|^2 \simeq \oint_{p'} |\mathcal{V}(\{k\} \to \{p'\})|^2 \times |\mathcal{P}(\{p'\} \to \{p\})|^2$

Classical propagation in the background nucleus creates an effective optical potential which induces two effects:

1. Short-distance:
$$\frac{d\sigma}{d\Omega} \longrightarrow \left(\frac{d\sigma}{d\Omega}\right)_{\text{in medium}}$$

(In-medium corrections to NN interactions)

2. Long-distance: $\dot{\mathbf{p}} = -\partial_{\mathbf{q}}H \quad \dot{\mathbf{q}} = +\partial_{\mathbf{p}}H$

(Classical evolution in background potential)