A Spicy Overview of Global 3+1 **Scenario**

UNIVERSITY

The NSF Institute for Artificial Intelligence and **Fundamental Interactions**

for SCIENCE ADVANCEMENT

Outline

- The long-lasting anomalies and shout-out from string theory
- Where do we stand on 3+1 in 2024?
- The garden of forking paths
- 3+1+X

Outline

- The long-lasting anomalies and shout-out from string theory
- Where do we stand on 3+1 in 2024?
- The garden of forking paths
- 3+1+X

The pieces that do not fit: short-baseline anomalies

These are not alone, other interesting observations

	$ \nu_{\mu} \rightarrow \nu_{e} $	$ u_{\mu} ightarrow u_{\mu}$	$ u_e \rightarrow \nu_e $		
Neutrino	MiniBooNE (BNB) *	SciBooNE/MiniBooNE	KARMEN/LSND Cross Section		
	MiniBooNE(NuMI)	\mathbf{CCFR}	Gallium *		
	NOMAD	CDHS	BEST *		
	MicroBooNE (BNB)	MINOS IceCube			
Antineutrino	LSND *	SciBooNE/MiniBooNE	Bugey Daya Bay		
	KARMEN	CCFR	NEOS PROSPECT		
	MiniBooNE (BNB) *	MINOS	DANSS STEREO		
		IceCube (*?)	Neutrino-4 *		
* ⇒ >2	σ "signal"				

Introducing a sterile neutrino

Why an eV-scale sterile?

Recent developments from string theory

- Swampland program: determine the theory requirement for effective field theories to be Quantum Gravity theories.
- Swampland conjectures (Vafa-Ooguri,1610.01533) and Gonzalo et al (arXiv:2109.10961) require that neutrinos be Dirac particles in minimal model.
- Swampland proposal for dark sector predicts existences of meV - eV sterile neutrinos. Vafa arXiv:2402.00981.

- The long-lasting anomalies and shout-out from string theory
- Where do we stand on 3+1 in 2024?
- The garden of forking paths
- 3+1+X

What does the data say?

	$\nu_{\mu} \rightarrow \nu_{e}$	$ u_{\mu} ightarrow u_{\mu}$	$\nu_e \rightarrow \nu_e$
	ν MiniBooNE NUMI-MB NOMAD MicroBooNE	SciBooNE-MB	KARMEN-LSND-xsec
		\mathbf{CCFR}	SAGE+GALLEX
ν		CDHS	BEST
		MINOS	MicroBooNE
		MicroBooNE	MiniBooNE
$\bar{ u}$	LSND KARMEN MiniBooNE		Bugey
		SciBooNE-MB	NEOS
		\mathbf{CCFR}	DANSS
		MINOS	PROSPECT
		IceCube	STEREO
			MiniBooNE

Will show results from the latest Columbia-Harvard-MIT Global Fit Hardin arXiv:2211.02610

Appearance and disappearance "preference regions" don't overlap!

Will show results from the latest Columbia-Harvard-MIT Global Fit Hardin arXiv:2211.02610.

Similar conclusions from other groups see Gariazzo et al. 1703.00860, and Dentler et al JHEP 1808 (2018). See Diaz et al. arXiv:1906.00045 for more discussion. Appearance and disappearance "preference regions" don't overlap!

3+1 model severely disfavored by tension between appearance and disappearance

Will show results from the latest Columbia-Harvard-MIT Global Fit Hardin arXiv:2211.02610.

Similar conclusions from other groups see Gariazzo et al. 1703.00860, and Dentler et al JHEP 1808 (2018). See Diaz et al. arXiv:1906.00045 for more discussion.

Highlights $P(\nu_e \rightarrow \nu_e)$: Solar, Reactors, and BEST

BEST Collaboration, 2201.07364

— Stéréo 95%

RENO+NEOS 95%

— KATRIN 95%

- MicroBooNE ($\sin^2 2\theta_{ee} = 0$)
 - MicroBooNE (sin² $2\theta_{ee}$ marg.)
- RAA 95% (allowed)
- Neutrino-4 2σ (allowed)
- ••• All Ga 3σ
- All Ga 2σ
- All solar ν_e 's 95%
 - Excluded by VSBL

- -BEST confirms longstanding "Gallium" anomalies at 5 sigma level.
- -Mixing angle required is large.
- -Tension with reactor and solar data.

Highlights $P(\nu_e \rightarrow \nu_e)$: **IsoDAR!**

IsoDAR@Yemilab: Combining the first high-power, underground accelerator with a large scintillator detector for Beyond Standard Model Physics

Much larger samples than exist today! in 5 years (4 years of live time)....

7000 v_e -electron elastic scatters (a lepton-lepton collider!)

components funded under construction 14

Highlights $P(\nu_{\mu} \rightarrow \nu_{\mu})$: MINOS+

MINOS Collaboration Phys. Rev. Lett. 122, 091803 (2019) arXiv:1710.06488v6

Highlights $P(\nu_{\mu} \rightarrow \nu_{\mu})$: MINOS+

We studied the MINOS/MINOS+ using their official data release in search for clues.

Hardin et al arXiv:2211.02610v1

Highlights $P(\nu_{\mu}$ $\rightarrow \nu_{\mu}$): **IceCube**

N. Kamp, 2024, this workshop

IVEL IRI 1TASI

Significance dominated by through-going events and vertical component

Yellow: data prefers null fit Purple: data prefers oscillation fit 17

Best fit – Null fit

√Null fit

Red: excess in best fit v.s. null

 $Pull \equiv$

Increased statistics and improved systematic treatment shows persistent preference for non-null model at 2 sigma level. Most significant observation in the muon-neutrino channel!

IVE IRI

Highlights $P(\nu_{\mu} \rightarrow \nu_{\mu})$: Future KM3NeT

Highlights $P(\nu_{\mu}$

MicroBooNE

Thank to the MicroBooNE and MiniBooNE collaborations for making their data and MC available for studies!

Two important messages:

- Given the large electron mixing angle suggested by best full 3+1 analysis needed to properly understand data.

- MiniBooNE+MicroBooNE combination does not significantly impact prefer region, see MiniBooNE (arXiv:2201.01724)

See CA, I. Esteban, M. Hostert, K. J. Kelly, J. Kopp, P. A. N. Machado, I. Martinez-Soler, and Y. F. Perez-Gonzalez (arXiv:2111.10359) See also P. Denton (arXiv:2111.05793), MicroBooNE (arXiv:2210.10216), and MiniBooNE (arXiv:2201.01724)

Highlights $P(\nu_{\mu} \rightarrow \nu_{e})$: MicroBooNE

Electron neutrino data in MicroBooNE seems low.

P. Denton (arXiv:2111.05793) claims 2σ hint that matches BEST.

CA et al (arXiv:2111.10359) agree on bestfit point, but do not find it significant.

MicroBooNE says compatible with error bars.

I think it will be very interesting to see if this low event rate continues in next, unanalyzed MicroBooNE data! This would support BEST mixing angle.

See CA, I. Esteban, M. Hostert, K. J. Kelly, J. Kopp, P. A. N. Machado, I. Martinez-Soler, and Y. F. Perez-Gonzalez (arXiv:2111.10359) See also P. Denton (arXiv:2111.05793), MicroBooNE (arXiv:2210.10216), and MiniBooNE (arXiv:2201.01724). See discussion on J. Hardin et al (arXiv:2211.02610)

- The long-lasting anomalies and shout-out from string theory
- Where do we stand on 3+1 in 2024?
- The garden of forking paths
- 3+1+X

From here: The Garden of Forking Paths*

- Do we understand all SM background/process well enough?
- •Do we understand how neutrino oscillations work?
- Are all the anomalies (MB, LSND, reactors) related? Or only some of them?
- Since null results are not scrutinized as carefully as anomalous ones
- •Why is there a very significant signal for ν_e disappearance in sources, but not in reactors?
- How do we interpret MicroBooNE data? Electron-neutrino disappearance?
 Nothing?
- Is IceCube seeing hints of the missing muon-neutrino disappearance?
- If the anomalies are confirmed as new physics, in what theories are they embedded?

From here: The Garden of Forking Paths*

The garden maybe actually a spiky garden full of cactuses ... we need to walk with care

LSND saw an excess of electron-antineutrino events.

- MiniBooNE saw an excess of electron-like events in neutrino and antineutrino modes.
- MicroBooNE saw no single photons; electron results yield no significant observation.
- Reactor experiments using ratios see hints of oscillations at large mass-square-differences.
- Source experiments see very significant deficit.
- Muon-neutrino disappearance has resulted in weak signals at large mass-square-differences.
- Anomalous observations are on a line on L/E.
- Standard cosmological scenarios disfavor an additional neutrino. Though tensions in the Hubble parameter indicate that something is missing.

Indications of new neutrino oscillations

LSND saw an excess of electron-antineutrino events.

- MiniBooNE saw an excess of electron-like events in neutrino and antineutrino modes.
- MicroBooNE saw no single photons; electron results yield no significant observation.
- Reactor experiments using ratios see hints of oscillations at large mass-square-differences.
- Source experiments see very significant deficit.
- Muon-neutrino disappearance has resulted in weak signals at large mass-square-differences.
- Anomalous observations are on a line on L/E.
- Standard cosmological scenarios disfavor an additional neutrino. Though tensions in the Hubble parameter indicate that something is missing.

Indications of new neutrino oscillations

LSND saw an excess of electron-antineutrino events.

- MiniBooNE saw an excess of electron-like events in neutrino and antineutrino modes.
- MicroBooNE saw no single photons; electron results yield no significant observation.
- Reactor experiments using ratios see hints of oscillations at large mass-square-differences.
- Source experiments see very significant deficit.
- Muon-neutrino disappearance has resulted in weak signals at large mass-square-differences.
- Anomalous observations are on a line on L/E.
- Standard cosmological scenarios disfavor an additional neutrino. Though tensions in the Hubble parameter indicate that something is missing.

MEL RU Itasi Many elements suggest something like 3+1, but something else is hinted by observations and tensions in the data sets.

Indications of new neutrino oscillations

LSND saw an excess of electron-antineutrino events.

- MiniBooNE saw an excess of electron-like events in neutrino and antineutrino modes.
- MicroBooNE saw no single photons; electron results yield no significant observation.
- Reactor experiments using ratios see hints of oscillations at large mass-square-differences.
- Source experiments see very significant deficit.
- Muon-neutrino disappearance has resulted in weak signals at large mass-square-differences.
- Anomalous observations are on a line on L/E.
- Standard cosmological scenarios disfavor an additional neutrino. Though tensions in the Hubble parameter indicate that something is missing.

MEL RU Itasi Many elements suggest something like 3+1, but something else is hinted by observations and tensions in the data sets.

Indications of new neutrino oscillations

Two hypothesis we will pursue

Path One

The anomalies are related.

Light sterile neutrino exists, but something is missing

Path Two

The anomalies are not related. Reactors are statistical fluctuations, BEST is systematic, ...

What can MiniBooNE be?

Outline

- The long-lasting anomalies and shout-out from string theory
- Where do we stand on 3+1 in 2024?
- The garden of forking paths
- 3+1+X

Idea 1: Sterile Neutrinos Plus NSI

The context

neutrino disappearance in ROI

Idea 1: Sterile Neutrinos Plus NSI

Introduction of NSI shifts the resonance and weakens constraint

J. Liao et al 1810.01000

A. Esmaili et al 810.11940

Idea 1: Sterile Neutrinos Plus NSI

NSI affects both long baseline experiments

This scenario needs to be reassess with updated NSI constraints, and IceCube and MINOS+ data

Idea 2: Sterile Neutrinos Plus Decay

34

Idea 2: Sterile Neutrinos Plus Decay

The global status

Moss Moss et al 1711.05921 Moulai et al 1910.13456

VE IRI

TAS

Global data prefers 3+1+Decay!

See also Berryman et al 1407.6631

See latest fits on this on Hardin et al arXiv:2211.02610

Idea 2: Sterile Neutrinos Plus Decay

IceCube also prefers 3+1+Decay!

How are our neutrinos produced?

CA, Bertólez-Martínez, Salvado arXiv:2201.05108

Context: tension between rate (BEST) and spectral measurements

Context: Tension between BEST and other reactor measurements

CA, T. Bertólez-Martínez, and J. Salvado 2201.05108 Berryman et al 2111.12530

WP solution in severe tension with estimation by Ahkmedov & Smirnov (arXiv:2208.03736)

Ok with estimation from Jones, Marzec & Spitz (2211.00026)

See also comment by Jones (2209.00561)

BSM proposal: Banks et al (2209.11270)

Take home message

- The short-baseline anomalies are an unresolved puzzled in neutrino physics
- Need to keep doing oscillation searches for 3+1+other scenarios in electron-neutrino and muon-neutrino.
- Need to think how all of these models would fit in the greater picture and cosmology.

Bonus slides

IsoDAR@Yemilab

IsoDAR with O(1M) events

IsoDAR@Yemilab will conclusively rule out the 3+1 model, but also due to its ability to trace the oscillation wave see variants on this model such as 3+1+Decay

IceCube@Antartica

Talk by A. Trettin@PANIC2021

very fast, unresolvable oscillations + distortion

> IceCube: World-leading limits on $|U_{\tau 4}|^2$ and $|U_{\mu 4}|^2$!

Projected sensitivity of sterile search with 8 years of DeepCore data

IceCube will continue improving muon neutrino disappearance searches. "Low energy" sample (<100 GeV) still not studied.

Menu of other explanations

New signatures

Gninenko 1107.0279 Magill et al 1803.03262 Heavy neutrino O(MeV), magnetic moment, decay

Bertuzzo et al 1807.09877, Ballett et al 1808.02916, CA, Hostert, Tsai et al 1812.08768 Heavy neutrino O(1-100MeV), light Z', decay

Heavy Neutrino Decay

Bai et al 1512.05357

Dentler et al 1911.01427, de Gouvea et al 1911.01447, Hostert & Pospelov 2008.11851

Heavy O(100MeV) decay to ν_e

Fisher et al 1909.0956, CA, Foppiani, Hostert 2109.03831

Heavy O(100MeV) decay to photon

Oscillations+X

Assadi et al 1712.08019 Resonant matter effect

Moss et al 1711.05921, Moulai et al 1910.13456 Steriles +decay

> Liao et al 1810.01000 Steriles + NCNSI + CCNSI

More than one at a time

S. Vergani et al arXiv:2105.06470 Light Sterile + Heavy neutrino O(100MeV), magnetic moment

46

Oscillation probability in the Wave Packet formalism

$$P_{\alpha\beta} = \sum_{i=1}^{n} |U_{\alpha i}|^2 |U_{\beta i}|^2 + 2\operatorname{Re} \sum_{j>i} U_{\alpha i} U_{\alpha j}^* U_{\beta i}^* U_{\beta j} \times \\ \times \exp\left\{-2\pi i \frac{L}{L_{\text{osc}}^{ij}} - 2\pi^2 \left(\frac{\sigma_x}{L_{\text{osc}}^{ij}}\right)^2 - \left(\frac{L}{L_{\text{coh}}^{ij}}\right)^2\right\}$$

$$L_{\text{osc}}^{ij} = \frac{4\pi E}{\Delta m_{ji}^2}$$
 and $L_{\text{coh}}^{ij} = \frac{4\sqrt{2}E^2\sigma_x}{\Delta m_{ji}^2}$

 σ_{x} is the wave packet size

Oscillations are damped due to the added uncertainty in the neutrino energy

Can we measure/constraint its size?

Let's not forget cosmology!

Dasgupta & Kopp 2014; Chu, Dasgupta & Kopp 2015 Saviano et al. 2014; Mirrizi et al. 2015; Cherry, Friedland & Shoemaker 2016; Chu et al. 2018 <u>See talk by Yvonne Y. Y. Wong at Neutrino 2020 for summary</u>