Millicharge Dark Sector & Reheating Cosmology at Fermilab SBN and LANL LANSCE-mQ

Gan, Tsai, 2308.07951 + Liu & Gunthoti (LANL), Citron, Hwang, Yoo

Yu-Dai Tsai University of California, Irvine (<u>yt444@cornell.edu</u>) → Los Alamos National Laboratory

Theoretical Motivations

Millicharged particle (mCP) is a particle χ with {mass, electric charge} = { $m_{\chi}, \epsilon e$ }

- Is electric charge quantized? To what unit? And why? Long-standing questions:
- a. Inspired Dirac quantization, Grand Unified Theories (GUTs)
- **b.** String theory predicts un-confined fractionally charged particles (included in this talk), Wen, Witten, Nucl. Phys. B 261 (1985)
- c. Link to string compactification & quantum gravity (Shiu, Soler, Ye, PRL '13)
- Writing a theory review summarizing these developments
- 2. Millicharged dark matter Implications & explain CMB absorption spectrum

 $\epsilon = Q_x/e$

Two Kinds of mCPs

"Pure" mCP

- Theoretical implication of mCP with a small (irrational or fractional) charge without a dark photon
- Implications on GUTs models
- Implications on string compactifications
 Shiu, Soler, Ye, PRL (2013)

Kinetic-mixing mCP

• Compatible with GUTS.

$$\mathcal{L}_{\rm MCP} = i\bar{\chi}(\partial \!\!\!/ - i\epsilon' e B \!\!\!/ + M_{\rm MCP})\chi$$

How can we differentiate them?

decouple from SM

Kinetic Mixing mCPs

- New Fermion χ charged under U(1)'
- Field redefinition into a more convenient basis for massless $B', B' \rightarrow B' + \kappa B$
- new fermion acquires a small EM charge Q (the charge of mCP χ): $Q = \kappa \dot{e}' \cos \theta_W$, $\epsilon \equiv \kappa e' \cos \theta_W / e$.

Motivations: Millicharged Dark Matter (mDM)

- 21 cm CMB absorption spectrum
- EDGES anomaly gives a hint of dark matter property
- Many (upcoming) measurements! Voytek et al, APJL (2014), Singh et al, arXiv: <u>1710.01101</u>

SARAS-3 in North Karnataka, India

Outline

- Intro & Motivations
- Probing Reheating Cosmology

Differentiate 2 types of mCPs

• Experimental Searches

Inflation and Reheating

a: scale factor, basically quantifying the size of the Universe t: time

We know very little about reheating. We don't even know what temperature does it reheat to!

Cosmic Millicharge Background (CmB) Gan, **Tsai**, <u>2308.07951</u>

"Pure" mCP

- mCP with a small (irrational) charge
 & no dark photon
- Indirect test of GUTs models
- Indirect test of string compactifications Gan, Shiu, Tsai, in progress

$$\mathcal{L}_{\rm MCP} = i\bar{\chi}(\partial - i\epsilon' e\mathcal{B} + M_{\rm MCP})\chi$$

Irreducible Production during Reheating

Cosmic Millicharge: Overproduction During Reheating Gan, **Tsai**, <u>2308.07951</u>

Irreducible Production during Reheating

mCP can be easily "overproduced", to more than that of the observed amount of dark matter (DM)

$$\Omega_{\rm DM} h^2 \sim 0.12$$

Currently measured DM abundance

$$\Omega \equiv rac{
ho}{
ho_c}$$
 :

Density is normalized by ρ_c , the critical density for a flat Universe; *h* = 0.674

$$ho_{
m c}=rac{3H^2}{8\pi G}$$

"Pure" CmB Cosmology: Freeze-in and Freeze-out $T_{rh} = 1$ TeV (or above)

 $\Omega_{\rm v} h^2 : T_{\rm rh} \gg 100 \, {\rm GeV}$ $\epsilon = Q_x/e$ 10¹⁰ 10^{0} 10^{8} $m_{\chi} = 1 \, \text{GeV}$ 10^{-1} • E 10^{6} 10^{-2} Freeze-out 10⁵ 10^{-3} 10^{4} D \mathbf{D} 10^{-4} 10^{2} 10^{-5} $\Omega_{\chi} h^2$ 10^{-6} 10⁰ 10^{0} mCP Overproduced C 10^{-7} $\Omega_{\chi} h^2 \gg 0.12$ B 10^{-2} \mathbf{E} 10^{-8} 10^{-9} B 10^{-4} 10^{-5} 10^{-10} 10^{-6} 10^{-11} Freeze-in 10^{-12} A 10^{-8} 10^{-13} 10^{-10} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{1} 10^{2} 10^{-2} 10^{-3} 10^{-1} 10^{0} 10^{1} 10^{2} (time \rightarrow) $x = m_{\gamma}/T$ $m_{\gamma}[\text{GeV}]$ SM $\dot{n}_{\chi} + 3Hn_{\chi} \simeq \mathcal{C}_n(T) \left(1 - \frac{n_{\chi}^2}{n_{\chi,cc}^2} \right),$ q_{χ} SM "Freeze-in"

"Freeze-out"

when it stops

 $\mathcal{C}_n(T) = 2n_Z \langle \Gamma \rangle_{Z \to \chi \bar{\chi}} + 2n_f n_{\bar{f}} \langle \sigma v \rangle_{f\bar{f} \to \chi \bar{\chi}}$

"Pure" CmB Cosmology: Low-Reheat Temperature T_{rh} = 10 MeV

For the freeze-in at low $T_{\rm rh}$, mCP-SM interaction is suppressed exponentially: the coupling has to increase exponentially to compensate it

The freeze-in curve holds the approximate relation: $q_\chi \otimes \, \exp\left(rac{m_\chi}{T_{
m rh}}
ight)$

"Pure" CmB from Irreducible Production

- Minimal reheating temperature larger than T_{BBN} (e.g., Hasegawa+, JCAP19; Hannestad, PRD04)
- Our purple bound is covering the SN1987A constraint (gray region from Chang+, JHEP18)

Kinetic-Mixing Cosmic Millicharge Background (CmB)

Kinetic-mixing mCP

$$\mathcal{L} = \mathcal{L}_{\rm SM} - \frac{1}{4} B'_{\mu\nu} B'^{\mu\nu} - \frac{\kappa}{2} B'_{\mu\nu} B^{\mu\nu} + i\bar{\chi}(\partial \!\!\!/ + ie' B' + iM_{\rm MCP})\chi$$

Choose a proper basis: massless dark photon A' decouple from SM

$$q_{\chi} = \frac{\epsilon g_d}{e}$$
$$\mathcal{L}_{\rm MCP} = i\bar{\chi}(\partial \!\!\!/ - i\epsilon' e \not \!\!\!/ B + M_{\rm MCP})\chi$$

Kinetic-mixing mCP Inflaton Reheating Thermalizatio XX SM g_d SM Freeze-in: Freeze-out:

massless dark photon A' will affect N_{eff} See Vogel, Redondo, JCAP (2014), Adshead, Ralegankar, Shelton JCAP (2022)

Kinetic-Mixing CmB Cosmology

$$q_{\chi} \sim 10^{-7} \left(\frac{m_{\chi}}{1 \,\text{GeV}}\right)^{1/2} \left(\frac{\Delta N_{\text{eff}}}{0.3}\right)^{1/2} . \ m_{\chi} \leq T_{\text{rh}}$$
$$q_{\chi} \propto \exp\left(\frac{m_{\chi}}{T_{\text{rh}}}\right) . \ m_{\chi} > T_{\text{rh}}$$

Considering higher reheating temperatures for region to the right of the red curve:

$$\Delta N_{\rm eff} \lesssim g_{A'} \, \frac{4}{7} \left(\frac{g_{*,S}(T \ll T_{\rm QCD})}{g_{*,S}(T \gg T_{\rm QCD})} \right)^{4/3} \simeq 0.1,$$

See Gan, Tsai, 2308.07951 for detailed discussions

Current: $\Delta N_{\rm eff} \leq (0.3)_{\rm Planck}$ Future: $\Delta N_{\rm eff} \leq (0.06)_{\rm CMB-S4}$

Testing Reheat Temperatures in Both Cases

Theoretically, there is a limit on how small g_d can be, for a given q_{γ}

16

χ

א *A'*

"Distinguishability" Conditions Gan, **Tsai**, 2308.07951

• Turning down thermalization between χ – A': $g_d \lesssim (16\pi^2 m_\chi/\mathcal{F}m_{
m pl})^{1/4}$

- Requirement for kinetic mixing: $\epsilon < 1 \Rightarrow g_d > eq_{\chi}, \quad q_{\chi} = \frac{\epsilon g_d}{e}$ Burgess *et al*, JCAP (2008)
- Considering these two inequalities for gd, we can roughly determine that:

$$q_{\chi} \gtrsim rac{1}{lpha_{
m em}^{1/2}} \left(rac{m_{\chi}}{\mathcal{F}m_{
m pl}}
ight)^{1/4}$$

One CANNOT de-theramlize $\chi - A'$ interaction rate to mimic "pure" mCP!

Regions of Interests

- Orange Star: favoring "pure" mCP
- Yellow Star:

testing reheat temperatures

Green Star:

1) testing reheat temperatures with CMB-S4

2) currently favoring kinetic-mixing mCP

 Purple Star: favoring kinetic-mixing mCP (can be reached by direct-detection exps.)

Outline

- Intro
- Probing Reheating Cosmology
- Experimental Searches

Two Search Methods: Scattering & Scintillation

(A) Electron Scattering

~ energy exchange set by detector threshold (> MeV)

e.g., neutrino detector Credit: <u>MicroBooNE Col.</u>

$$\sigma_{e\chi} \simeq 2.6 \times 10^{-25} \text{cm}^2 \times \epsilon^2 \times \frac{1 \text{ MeV}}{E_e^{(\text{min})} - m_e}.$$

Expressed in recoil energy threshold, $E_e^{(min)}$

(B) Dedicated Scintillation Searches for Millicharge Particles

 \sim eV-level energy exchange

 $\left\langle -\frac{dE}{dx}\right\rangle \propto \epsilon^2.$

Energy deposition

e.g., Haas, Hill, Izaguirre, Yavin, 1410.6816 milliQan design, 1607.04669 (MilliQan Collaboration)

Accelerator Productions

Two Search Methods: Scattering & Scintillation

(A) Electron Scattering

~ energy exchange set by detector threshold (~ MeV)

$$\sigma_{e\chi} \simeq 2.6 \times 10^{-25} \text{cm}^2 \times \epsilon^2 \times \frac{1 \text{ MeV}}{E_e^{(\text{min})} - m_e}.$$

Expressed in recoil energy threshold $E_e^{(\text{min})}$.

(B) Dedicated Scintillation Searches for Millicharge Particles

 \sim eV-level energy exchange

e

$$\left\langle -\frac{dE}{dx}\right\rangle \propto \epsilon^2.$$

Energy deposition

Electron Scattering Searches

Electron Scattering ~ energy exchange set by detector threshold (~ MeV)

High-Intensity NuMI/LBNF proton beam@ Fermilab

MicroBooNE Detector

Image credits: MicroBooNE & ArgonCube Cols.

1. Proper millicharge analysis at MicroBooNE

 Develop <u>coalescent plan</u> to study <u>neutrino</u> <u>electromagnetic properties</u> at **MicroBooNE**, Icarus, ArgonCube 2x2, SBND and LHC neutrino experiments, e.g., Forward Liquid Argon Experiment (FLArE) Kling, Kuo, Trojanowski, Tsai, 2205.09137

Image from DUNE col.

Sensitivity and Contributions

 $\chi e \rightarrow \chi e$ scattering:

$$rac{d\sigma}{dE_r} pprox rac{1}{E_r^2}$$

- *E_r* is the kinetic energy of the recoiled electron
- Energy threshold is important

- MiniBooNE* is the MiniBooNE dark-matter run: thick target and no horn focusing
- One can can set set recoil energy within ~ 30 MeV $\leq E_r \leq$ 1 GeV to reduce background for liquid argon detectors
- Alternative: double-hit with softer recoils, setting $E_{r,\min} \simeq 2$ MeV
- Preliminary discussions and studies of MicroBooNE(-like) experiments

ArgoNeuT Millicharge Analysis

ArgoNeuT collaboration, PRL (2020), 1911.07996

Two Search Methods: Scattering & Scintillation

(A) Electron Scattering

 \sim energy exchange set by detector threshold (\sim MeV)

e.g. neutrino detector Credit: <u>MicroBooNE Col.</u>

$$\sigma_{e\chi} \simeq 2.6 \times 10^{-25} \text{cm}^2 \times \epsilon^2 \times \frac{1 \text{ MeV}}{E_e^{(\text{min})} - m_e}$$

Expressed in recoil energy threshold, $E_e^{(min)}$

(B) Dedicated Scintillation Searches for Millicharge Particles

 \sim eV-level energy exchange

$$\left\langle -\frac{dE}{dx}\right\rangle \propto \epsilon^2.$$

Energy deposition

Dedicated mCP Searches in Next 3 Years

1. milliQan (taking data); 2. SUBMET: mCP search at J-PARC; fully approved

Detector Placement

• 800 MeV Proton Beam

Kranti Gunthoti (LANL)

- Numbers of layers to be determined
- New nominal design: double coincidence.

There are two possible locations for MCPx at the Lujan Center.

-Location 1: ER-2 area, 35 m from the center of the target

-Location 2: In the flight path 8 area at ER-1, 10 m from the center of the target.

Detector Concept (prototype):

-The scintillator bars (5 cm x 5 cm x 80 cm) are arranged in four layers.

- -A photomultiplier tube (PMT) is attached to one end of each bar.
- -This detector will be 90 degrees w.r.t. the proton beam.
- Meson Productions: CCM, PRD (2022), 2105.14020
- New scintillator like CeBr3, to reduce beam-produced backgrounds

Fixed-Target Live Time (LANSCE Beam)

- Width of a single proton bunch: triangular pulse ~ 270 ns wide
- Set acquisition time window = 500 ns
- Live time/year = 500*ns* x 20*Hz* x 86400*s* x 365d ~ 315 seconds
- Dark current background ~ 0.15 events per year for 2 layer-coincidence
- We can afford N = 1 or 2 layers for fixed-target searches: larger signal rate: $P = (1 - \exp[-N_{\rm PE}])^{n_{\rm layers}}$

mCP Sensitivity Reach

Testing & Installation

Experimental team led by **Gunthoti (LANL)** to test/install the detector

A similar detector now installed at CERN to take data. FORMOSA, Foroughi-Abari, Kling, Tsai, PRD (2021), 2010.07941, lead by Citron (UC Davis)

Outlook

1. mCPs are excellent targets to string theories, Grand Unification

Theories, cosmology, and dark matte theories & phenomenology

2. Excellent experimental target at

LANSCE-mQ, FORMOSA, J-PARC, DUNE, + MicroBooNE, ICARUS, SBND, MINERvA, CCM, almost any accelerator experiments

- 3. LANCSE-mQ can also be an excellent beam monitor
- 4. Theory, Pheno/Experiment, and Cosmology Reviews under way.

Frederick Reines

Nobel Prize Laureate @ LANL; Professor at UC Irvine Utilized a nuclear reactor to study free neutrinos

We have an opportunity to explore the millicharge dark sector and unveil deep mysteries of the Universe at LANL (With a little bit help from LDRDs ③)

Thank you!

Backup Slides

Dark Current Background @ PMT (for Qs)

- dark-current frequency to be $v_B \sim 50 500$ Hz for estimation (2005.06518) (Hamamatsu R7725 can reach 50 Hz during recent testing)
- For each tri-PMT set (using 500 Hz as a conservative estimation), the background rate for triple incidence is $v_B^2 \Delta t = 5 \ge 10^{-4} \text{ Hz}$, for $\Delta t = 20 \text{ ns}$.
- ~ Background 0.15 events per year in one year of trigger-live time
- FerMINI: Kelly, Tsai, PRD (2019), <u>1812.03998</u>
 SUBMET: Kim, Hwang, Yoo, JHEP (2021), 2102.11493

Kinetic-Mixing CmB Cosmology:

N_{eff} Effects from Dark Photon

- Freeze-in from the heat bath
- χ thermalizing with dark photon: Require effective transfer of χ entropy to dark radiation A' here

$$\begin{split} \frac{n_{\chi}^{\rm FI} \langle \sigma v \rangle_{\rm dth}}{H} &\sim q_{\chi}^2 \alpha_{\rm em}^2 \alpha_d^2 \left(\frac{m_{\rm pl}}{T}\right)^2 \gg 1.\\ \alpha_d \gg 10^{-4} \end{split}$$

• A quick ΔN_{eff} estimation:

$$\Delta N_{\rm eff} \sim q_\chi^2 \alpha_{\rm em}^2 \frac{m_{\rm pl}}{m_\chi}$$

• Our purple bound is again covering the SN1987A constraint

"Pure" CmB Cosmology: Freeze-in and Freeze-out

See, e.g., Vogel, Redondo, JCAP (2014), Dvorkin+, PRD (2019)

Lujan Center: Meson Productions

-The π^0 angular distributions produced at the Lujan target, assuming POT= 2.71×10^{21} .

-The total number of π^0 s, N π^0 , scales linearly with Protons on Target (POT), based on the simulations N $\pi^0 = 0.115 \times POT$.

-The momentum distribution peaks between 100 and 120MeV, with a mean momentum of 146MeV.

CCM Collaboration, PRD, Vol. 106, No. 1 (2022) https://arxiv.org/abs/2105.14020

Projection and Timelines

- milliQan prototype ran successfully and has set new limits
- Full milliQan operating now ('22-'26)
- FORMOSA Phase I installation (end of 2023, Beginning of 2024)
- New scintillator study & R&D ongoing;
- Collaborating with Matthew Citron (UC Davis) to design and install prototype to reach even better sensitivity

Other Ways to Study mCPs

 Cosmic-ray productions and detections in large neutrino observatories (Super-K) Plestid, Takhistov, Tsai et al, <u>2002.11732</u>, PRD 20.

by Chantelauze, Staffi, and Bret

Super-K, http://www-sk.icrr.u-tokyo.ac.jp/sk/index-e.html