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Overview of the content this talk

Introduction to LArTPC experiments and SBN physics program
General description of TPC event reconstruction chain and main steps
Iwo parallel event reconstruction paths:

Pandora-based event reconstruction:
overview of the hierarchy, insights on the main stages

Machine Learning- (ML) based event reconstruction: e
overview of the full reconstruction chain &

Conclusions and perspectives

Santa Fe, New Mexico
April 2*to 5™ 2024




The Short Baseline Neutrino (SBN) program
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Liquid Argon Time Projection Chambers (LArTPCs)
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Proposed by C. Rubbia in 1977, LArTPCs are
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2/3 wire planes (3-5 mm wire pitch)
with different orientation to generate
2D views of particle tracks
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Typical LArTPC detector components: ICARUS detector as example

Two identical cryostats (3.6 x 3.9 x 19.6 m3) housing two T

PCs each, 760 tons of ultra pure

iquid argon for a total active mass of 470 ton
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Event reconstruction in LAr TPCs: ICARUS reconstruction chain
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Event reconstruction in LAr TPCs: I[CARUS reconstruction chain

combinations.
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Signal processing:

foreseen change from 1D to 2D deconvolution

Wire signals are a convolution of electric field and electronics responses:

M(t) = J OOR(t, t') - S(¢)dt

/ - / \

Measured signal Response function| |Original wire signal

Original wire signal extracted with

1D deconvolution after applying a filter for noise
|

2D deconvolution to account for induced charge

effects, I.e. charge drifting in nearby wire regions

’ .

improvement of the charge resolution

!'

higher & on hits reconstruction
for specific track classes
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Pandora-based
event reconstruction

Multi-algorithm pattern-recognition software
Goal: reconstruct interaction hierarchies
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https://qgithub.com/PandoraPFA

9 Boosted Decision Trees (BDTs), i.e. ML algorithms, employed in three steps of the chain



https://github.com/PandoraPFA

Boosted Decision Tree (BDT)

We mentioned several places where Pandora uses this algorithm for the reconstruction.

|[dea: Identify a signal and a background class and a set of input features on which you
expect there could be a good separation between them.

Method: BDT is first trained on a sample where the true class is known and input features
are used to have the power to distinguish between signal and background, then for a new
sample with unknown class the same set of features iIs computed to define a score that

guantifies how “signal-like" the sample Is.

Signal: Leonardo da Vinci art work
EXample: gackground: Pablo Picasso art work (from the cubism period)
Sample: a generic painting
Input parameters: use of colors, light and shadow, presence of geometric shapes
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Boosted Decision Tree (BDT)

Example: Signal: Leonardo da Vinci art work

Background: Pablo Picasso art work (from the cubism period)
Sample: a generic painting
Input parameters: use of colors, light and shadow, geometric shapes, ...

3;_ Leonardo
25— Picasso
15[
05E-
Oo: 1 2 :13 4 5 5 7 8 9 10

Signal (Leonardo da Vinci) score

Background




Pandora-based event reconstruction:

new BDT training to discriminate tracks and showers

Training based on 8 geometrical variables
(5 calorimetrical) from the 3D coordinates

(charge) of the hits
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Pandora event reconstruction: visual scanning and data/MonteCarlo
comparison to evaluate performance/improvements

We employ visual scan v events selection and Monte Carlo simulations to identify reconstruction
pathologies, explore reconstruction improvements and tune our selection algorithms for analyses

Most frequent pathology is track splitting ©(6-7%), Collection plane
followed by wrong vertex ID O(4%) and track/shower ID | ¢ ,é/ v, CC
Validation w/ visual scan based on the 3D position of X ;rim‘ary\ candidate
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https://doi.org/10.1140/epjc/s10052-023-11610-y
https://doi.org/10.1140/epjc/s10052-023-11610-y

Pandora-based event reconstruction: track splitting

Several studies to mitigate the problem of track splitting:

e.g. the single track of a u is reconstructed as n > 1 segments

- Track splitting happening at detector boundaries:
z = 0, at the cathode

Reco tracks

-+ Ongoing study of a stitching algorithm to join track pieces post-reconstruction based on MC

- Study of a stitching algorithm on cosmic i in data: TPC tracks are identified after C

- Study of the systematic
induced by track-splitting: .’

8Basic Idea; break tracks

study how reco is affected |Cartoon of the stitching algorithm

TFMT

Cosmic entering

RT-

PMT Info

ICRT walls
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Pandora-based event reconstruction:
data-driven systematics study

Goal: understand and account for differences in reconstruction between data and MC
Foreseen goal: data driven validation of ML algorithms

Hit Activity Removal from Particles for Systematics (HARPS): operate on specific particles and

reduce thelir size <> similar to starting with a lower energy particle
and analyse the impact on reconstructed quantities

= ¥ Cartoon of the idea:
HARPS on a sample

of protons from
LU + cosmics MC

Residual range Residual range




Pandora-pbased event reconstruction: summary and next steps

Strong interplay with the needs/results of the ongoing analysis efforts in defining our goals:
we are increasing our effort towards evaluating reconstruction (detector) systematics

Several efforts to mitigate the effects of the most relevant reconstruction pathologies at
different levels including track splitting, track vs shower misidentification, vertex reconstruction

Next steps foreseen: continuous validation of the reconstruction chain and (re)training of the
ML algorithms employed in several points of the reconstruction any time relevant changes to
signal processing at previous stage are included in the data processing chain
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Machine Learning (ML) based LArTPC event reconstruction

Hierarchical feature extraction v,, CC, 800 MeV 4

Image classifier
Convolutional Neural Network

Separate voxels based on the topology | 2 |Find important points (vertex V, start/end P)| | 3 |Cluster particles

17




ML-based LArTPC event reconstruction:
end to end reconstruction chain

> Voxels classified in different abstract particle classes EI Assemble shower objects and
+ identification of the points of interest identity primary fragments
Convolutional NN Graph NN
AP — B E——
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- — ) N I s o —>
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w/ deghosting ' ~ 3., “%“ 5.,

2D views from
wire planes

3 NN to build individual dense particle clusters

5]

Particles aggregation into
interactions and |1D
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https://arxiv.org/abs/2102.01033

1 | ML-based event reconstruction: hierarchical feature extraction

Cluster 3D: make all valid

Lst Induction S~ wLIEe el | (time-compatible & intersecting)
| combinations of hits

across 2 wire planes

2nd Induction

Collection

------ ICARUS simulation .,
.
Run 7924, Event 4966 RS L 1 3 ., .,
. zlcm]
a H \Wire

Deghosting: use U-ResNet
to identify and remove
artifacts of the reconstruction
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ML -based event reconstruction:
hierarchical feature extraction
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fragments at PPN 20

Distinguish different particle types
based on topological features and
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Use a Graph Neural Network



https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004

ML -based event reconstruction:
hierarchical feature extraction

1
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Interaction aggregation

Use a Graph Neural Network
(GNN) to aggregate particles and
form interactions

Particle identification

Use GNN to identify particles
e, v, U, T, p In context

Primary identification
Separate particle(s) which
originate from the vertex. This is
fundamental for analyses.
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004

ML -based event reconstruction:

performance
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ML-based event reconstruction: current effort and next steps

Continuous effort to improve the performance of the end-to-end ML-based reconstruction
chain as a whole exploiting both MC simulations and visual scanning info

Several physical analyses underway in ICARUS using ML-based reconstruction:

Beyond Standard Model physics: Higgs-portal scalar decays, S — ee, (J.Dyer) E
see her talk tomorrow!
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Thank you for your attention!
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Back-up slides
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Neutrino physics: oscillations and the sterile neutrino puzzle

LSND and MiniBooNE reported anomalous signals of v, excess at low E: this could imply an

additional term Amz,

~ 1.0 eV~ driving v, = U, oscillations at small distances and pointing

towards the possible existence of non-standard heavier sterile neutrino(s)
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Njf Phys. Rev. D 64, 112007 (2001)  Nj Phys. Rev. D 103, 052002 (2021)
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A clear tension between
appearance and
disappearance results Is
also observed so the
possibility to measure both
channels with the same
experiment is extremely
helpful to understand the
current physics scenario
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The Short Baseline Neutrino (SBN) physics program

SBN v, appearance SBN v, disappearance
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Event reconstruction in LAr TPCs

Goal: take the electronic signals acquired by various subsystems and combine them to extract physical
guantities related to neutrino interactions happened within the detector:

TPC readout signals go from waveforms on 3 wire planes to showers and tracks
Light detector (PMT) readout signals go from waveforms to hits clustered into flashes
Cosmic Ray Tagger (CRT) signals to reduce cosmic rays background are collected into hits

Tools to match info between TPC,CRT,PMT and fiducialize detector volume, mitigate lbackground,
ncrease sensitivity by filtering events

~

Particle generation | [ Particle propagation | [ Detector simulation _ Stage 0 <> upstream reco:
(GENIE) i (GEANT4) (t (signal within detector) TPC/PMT waveforms <> hitsj

f ; | \
Real data | Data from the DAQ Stage 1< downstream reco:

N tracks/showers, CRT
\_ Y,

Several activities: signal processing (upstream reconstruction), pattern-recognition,
calorimetry, particle identification (downstream reconstruction)

Simulated events

Disclaimer: I'll mostly refer to ICARUS TPC downstream reconstruction




The ICARUS TPC reconstruction chain

PMT signal

Calibration & T
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reco: process TPC
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Stage 1 «
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/WU = Data /

Pandora Machine
Learning

Analysis
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LAr TPC images:

different event displays to help understanding reconstruction

** note some wires “shared”

LarSoft event display
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Several event displays (TITUS, LArSoft, DECAF) to analyze 2D images
of hits and reco objects and help understanding reconstruction (issues)

pohysical space, easier 1o
study the interplay of CRT,

PMT, TPC info (e.g. track
splitting stitching algorithms) ,,



Signal processing:

foreseen change from 1D to 2D deconvolution

Wire signals are a convolution of electric field and electronics responses:

M(t") = 0QR(zf, t") - S(t)dt
pr= | pen s

Measured signal Response function  Original wire signal

Original signal can be extracted (1D deconvolution)

. . M(w)
as the inverse Fourier transform of S(w) = R(o) - F(w)
0,

with F(w) a filter (noise + zeros of the response function)

2D deconvolution to account for induced charge
effects of charge drifting in nearby sense wire regions:

improvement of the charge resolution — higher € on
Nits reconstruction for specific track classes

Time [3 us]
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Example of charge recovery from MicroBooNE
Adams, C. et al. 2018 JINST 13 PO7006 (ArXv link)
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TPC signal calibration

TPC calibration is based on the study of the ionization energy loss per unit length (dE/dx)
versus residual range, i.e. distance from the end of the reconstructed TPC track, for cosmic
muons (MIP) crossing the cathode and stopping/decaying in the active LAr volume

Ongoing effort to tune
TPC signal response to
improve data/Monte
Carlo agreement and to
iInclude the spatial
variations observed In
0 20 40 60 80 100 04 -0z 00 02 04 detector response to CR
Muons

=)}

Predicted MPV dE/dx

30000 -

o
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-

20000 +

Tracks
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BV
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N

5000 -

Calibrated dE/dx [MeV/cm]

-

Residual Range [cm]

East TPC, West Cryostat - Collection Plane

Further details in ljjl Eur. Phys. J. C 83:467 (2023)
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Pandora-based event reconstruction

-a
A

SO

ndora (ht:

ps://qithub.com/PandoraPFA)

1 INnte

face (https://larso

IS a multi-algorithm pattern-recognition software with

t.0rg) commonly used in detectors based on LAr technology to:

Cluster the objects together into reconstructed particles in 3D by joining information (hits) from the

T

Reco
and t

Reconstruct particle hierarchy (parent/chi

nus the point where the v candidate

PG wire planes into a reconstructed interaction (i.e. a slice);
nstruct the interaction vertex, i.e. the common point where reconstructed particles originate

iINnteracted:

d particles);

Classifies particles as track-like (i, p, 7=, ...) or shower-like (e, y...)

There is a series of algorithms that one can alter/expand or replace with alternatives

Machine
Slice identification to se
Vertex selection from ca

earning algorithms, e.g. Boosted
parate candidate v events from cosmics
ndidate important points

Track vs shower discrimination

Decision Trees (BDTs) are used in 3 steps of the chain:
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Pandora-based
event reconstruction

Jltimate output of Pandora is
reconstructed interaction hierarchies:

Beam spill

Clear cosmics
L candidates

Reco

(event)

Reco Réco
particle particle

particle |

2
Shower Track Both fits are done for
it fit each reconstructed
particle. Next steps are

energy reconstruction,
34 calorimetry, PID.
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Pandora-based event reconstruction:
new BDT training to discriminate tracks and showers

BDT based on a set of reconstruction variables:
8 geometrical (5 calorimetrical) from the
3D coordinates (charge) of the hits

Qutput is a track score: parameter in range [-1,1]
track-like (if Z0), shower-like (if <O) particle

New training based on BNB v-only
ICARUS MC recently introduced

35

3 additional charge variables to
improve the discrimination capability

Cross-Validation strategy to
maximize the classification efficiency

training sample with N, ks = Nehowers

good events: only events from v interactions
with Ny > 15 for ng;ys = 2

VIEWS

Training sample

Events

Test sample
V + cosmics
gclassiﬁcation\ v only good events
vonly | \81 8% 81.4%
. re//' ‘
v+ COSIICS 81.5% m’”arySZ.O%
good events
old training 72.0% 71.8%
25000 -
Track
. True
Preliminary <: Shower

20000 A

15000 -
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5000 -

b

4,{.

-1.00 -=0.75 =050 -=0.25 0.00

Track
Shower

Predicted (BDT)

0.25 0.50 0.75 1.00

Track score



Pandora-based event reconstruction:
new BDT training to discriminate tracks and showers

Validation to exclude bias on the event selection, i. e. dependence on E,
Sample: O(5 - 10%) MC events

Old New A
training | trainin
Eclassification ; 5 .
BNB vonly 1»94.6% | 97.8% | 3.2%
(4 +p+7*)in trks + e7in shws
VUMV ONY || g5 996 |, 96.9% |14.0%
(,u +p+t+ e—) reco pre-tuning [’] 6\\4\‘\(\3
<A
NuMIvonly | "o 5or | 9549% | 5.4%
tuned [*]
& 5002_ Old training [ d SOD:_ Old training
400;— New training - New training
ot Preliminary w0 Preliminary
100%—- 200:_
OE K T 1 o; N I 06 08

BDT Track score of muons

BDT Track score of protons

XZ? yza

0.0 L

rack

SNB L, U, only, NuMl v only w/ (w/0) good reconstruction [**]

Allevents | 94 | New 4 x
training | training
BNBvonly | 72.3% | 80.3% | 8.0%
NUMIVONY | 67 8os | 79.9% |12.1%
pre-tuning [] ptete
Al
NuMIvonly | &g 700 | 7909 [12.5%
tuned [*]
N Old training E
s  New training
L Preliminary
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0.2

0.4
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1 1 l

06

0.8
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Track score BDT variables for track/shower discrimination

The BDT uses 10 input variables:

1. Length: estimate of length of the reconstructed particle

2. oSliding linear fit: Estimate of difference with respect to a straight line averaged over planes
(divided by length so it’s a fraction and not length correlated)

3. Sliding linear fit: Estimate of the largest gap averaged on planes (again divided by length)

4, Sliding linear fit: Estimate of the RMS averaged on planes (divided by length...)

5. Vertex distance: distance from the interaction vertex to the start of the particle

6. Difference in beginning and end direction of the reconstructed particle: computes an angle
relating to a few points at the beginning and at the end of the particle
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Track score BDT variables for track/shower discrimination

The BDT uses 10 input variables:

/. Principal Component Analysis: secondary eigenvalue / primary
(estimate of how linear the particle is)

8. Principal Component Analysis: tertiary eigenvalue / primary
(estimate of how linear the particle is)

9. Charge variable 1: fractional spread of charge values calculated as follows:

c/\/ N
C, = \/_ where pu = Z G (mean charge) , 6% = Z (g, — 1)* ,06/4/N an RMS/mean

H hit hit

10.Charge variable 2: fraction of the total charge that is near the end of the particle

C, = dend here g, is the total charge, g, , the charge of the 10 % hits near the end

q 1ot 38




Track score BDT variables for track/shower discrimination

Halo total ratio: in the shower hypothesis, the fraction of charge in the external halo,
evaluated summing the energy of the hits whose transverse distance (R) to the cluster
direction (outcome of PCA) is above 20% of the Moliere Radius (R, =10 cm);

Concentration: in the shw hp, the ratio between the concentration and the total charge,
where concentration is the sum of E/R_ for all the hits and the total charge is halo +
cone charge, cone (halo) includes hits with R_<(>) 0.2 R ;

Conicalness: in the shw hp, this variable quantifies the how the charge is distributed in
the cone and increases if the charge is concentrated in the final part of the cone, it is
computed as the ratio between charge in the final part/charge in the initial part of the
cone (weighted by RTZ) normalized to the ratio total end charge/total start charge.

39



Pandora-based event reconstruction:
study of systematics and performance

Goal: understand and account for differences in reconstruction between data and MC

Hit Activity Removal from Particles for Systematics (HARPS): the basic idea is to operate on
picked particles and reduce their size (e.g. take a long, clear proton and make it shorter by

removing hits at the beginning of the track <> similar to starting with a lower energy proton)
and analyse the impact on reconstructed quantities - data driven validation of ML algorithms

Example: HARPS on
a sample of protons

from v+cosmics MC
dE/dXx dE/dx x

Residual range Residual range
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Pandora-based event reconstruction:
improvements to MC simulations

Difference in data and MC:;

t = 0 in an event was different:

- In data: time of the trigger

- In MC: start of the

- Can lead to the effec

beam time

- of splitting

the tracks If the even

- Start at

t > 0, particularly relevant for

NuMI (beam duration

of the

beam spill is 9.6 ps) as shown In

the cartoon

- EE N N
- m = = -y
- - -
- =
- ~
- ~
- ~
- ~
- ~
- ~
- ~

- New module to emulate

I
the trigger added to the
simulation tools iImproving
the vertex reconstruction
W
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1 | ML-based event reconstruction: hierarchical feature extraction

Cluster 3D: make all valid

Lst Induction S~ wLIEe el | (time-compatible & intersecting)
| combinations of hits

across 2 wire planes

2nd Induction

Collection

------ ICARUS simulation .,
s
Run 7924, Event 4966 S ~ o " - °
. z [cm]
;M \Wire

Deghosting: use U-RBesNet
to identify and remove
artifacts of the reconstruction

Starting point:
3 wire planes <> 3 x 2D images

o - N —
O N »)

350

00
0S
(\8)8

m ™~



https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.012005

ML -based event reconstruction: hierarchical feature extraction

BNB v only
,
.
Purity  -mmmmeees >
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- .
S Ghostl (119870) [NORHVEELY
X = 0.6
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S ; 0.4
: © 0.934 0.007
< O Non-Ghost pui T PYYIM (116882) 0.2
2y Purity  =ee-----
- Non-Ghost Ghost
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Deghosting: use U-ResNet to identity and remove artifacts of the reconstruction
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2 | ML-based event reconstruction: hierarchical feature extraction

A score for each target particle

z [cm]

class, EM showe

Michel elect
energy (L
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), 1S

. track-li
elta ray,

KE,

oW

oredicted

Semantic segmentation
Distinguish different particle types
based on topological features

BNB v, only
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B

24

Sparse convolutional network (U-ResNet)

y | | Zz [cm]

Point of interest (PPN)

Progressively narrow down a
region to a single point with
successive masks: 96% of points
are found within 0.7 cm *
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3 | ML-based event reconstruction: hierarchical feature extraction
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4 | ML-based event reconstruction: hierarchical feature extraction
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ML -based event reconstruction: hierarchical feature extraction

Primary muons -~
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Interaction aggregation

Use a Graph Neural Network (GNN) to aggregate

particles and form interactions
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5| ML-based event reconstruction: hierarchical feature extraction

Particle identification

Photon
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Use again GNN to identify particles
e, v, 1, T, p in context

30,

Primary identification

BNBv primaries only
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Particle primary classification accuracy

Use GNN to distinguish primary

particles from secondaries.

This is fundamental for any

analysis studying a specific
interaction channel.
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