



#### Track reconstruction in liquid Argon TPC experiments

Alice Campani on behalf of the ICARUS collaboration















Istituto Nazionale di Fisica Nucleare 1





#### Overview of the content this talk

- Introduction to LArTPC experiments and SBN physics program •
- General description of TPC event reconstruction chain and main steps •
- Two *parallel* event reconstruction paths: •
  - **Pandora-based** event reconstruction: • overview of the hierarchy, insights on the main stages
  - Machine Learning- (ML) based event reconstruction: • overview of the full reconstruction chain
- Conclusions and perspectives ullet





2

### The Short Baseline Neutrino (SBN) program



![](_page_2_Picture_5.jpeg)

### Liquid Argon Time Projection Chambers (LArTPCs)

- Proposed by C. Rubbia in 1977, LArTPCs are ۲ high granularity, continuously sensitive, self-triggering detectors
  - **Dense medium:** high rate of  $\nu$  interactions •
  - 2/3 wire planes (3-5 mm wire pitch) • with different orientation to generate 2D views of particle tracks
  - 3D imaging with mm-scale resolution •
  - **Calorimetric** reconstruction capabilities •
  - Scalable to large detector volumes O(10) kton •

![](_page_3_Figure_7.jpeg)

Ideal for  $\nu$  interaction studies in a wide energy range

### Typical LArTPC detector components: ICARUS detector as example

Two identical cryostats (3.6 x 3.9 x 19.6 m<sup>3</sup>) housing two TPCs each, 760 tons of ultra pure liquid argon for a total active mass of 470 ton

![](_page_4_Figure_2.jpeg)

360 PMTs behind the wires to collect scintillation light and trigger events

![](_page_4_Figure_4.jpeg)

5

#### Event reconstruction in LAr TPCs: ICARUS reconstruction chain

![](_page_5_Figure_1.jpeg)

![](_page_5_Picture_2.jpeg)

![](_page_5_Picture_3.jpeg)

![](_page_5_Picture_4.jpeg)

#### Event reconstruction in LAr TPCs: ICARUS reconstruction chain

To reduce noise, keep only hits that are **consistent** with 3D points using 2 wire planes combinations.

#### Pandora-based

reconstruction

Downstream reconstruction is based on cluster, *slice* (groups of tracks related to the same particle interaction) and pattern recognition.

![](_page_6_Picture_5.jpeg)

Track and shower reconstruction, calorimetry

### Signal processing: foreseen change from 1D to 2D deconvolution

Wire signals are a convolution of electric field and electronics responses: •

![](_page_7_Figure_2.jpeg)

- - - for specific track classes

- Multi-algorithm pattern-recognition software

![](_page_8_Figure_3.jpeg)

## Boosted Decision Tree (BDT)

We mentioned several places where Pandora uses this algorithm for the reconstruction.

- Idea: Identify a signal and a background class and a set of input features on which you • expect there could be a good separation between them.
- <u>Method</u>: BDT is first trained on a sample where the true class is known and input features • are used to have the power to distinguish between signal and background, then for a new sample with unknown class the same set of features is computed to define a score that quantifies how "signal-like" the sample is.
- Signal: Leonardo da Vinci art work Example: Background: Pablo Picasso art work (from the cubism period) Sample: a generic painting Input parameters: use of colors, light and shadow, presence of geometric shapes

### Boosted Decision Tree (BDT)

<u>Example</u>: Signal: Leonardo da Vinci art work
 <u>Background</u>: Pablo Picasso art work (from the cubism period)
 <u>Sample</u>: a generic painting
 <u>Input parameters</u>: use of colors, light and shadow, geometric shapes, ...

![](_page_10_Figure_2.jpeg)

![](_page_10_Picture_3.jpeg)

#### Background

11

# Pandora-based event reconstruction: new BDT training to discriminate tracks and showers

 Training based on 8 geometrical variables (5 calorimetrical) from the 3D coordinates (charge) of the hits

New training based on BNB  $\nu\text{-only MC}$ 

![](_page_11_Figure_3.jpeg)

|             | $\varepsilon_{\text{classification}}$ | Old<br>training | New<br>training | Δ     |
|-------------|---------------------------------------|-----------------|-----------------|-------|
| Preliminary | BNB v only                            | 72.3%           | 80.3%           | 8.0%  |
|             | NuMI v only<br>pre-tuning [*]         | 67.8%           | 79.9%           | 12.1% |
|             | NuMI v only<br>tuned [*]              | 66.7%           | 79.2%           | 12.5% |

![](_page_11_Figure_6.jpeg)

#### Pandora event reconstruction: visual scanning and data/MonteCarlo comparison to evaluate performance/improvements

- •

![](_page_12_Figure_5.jpeg)

We employ visual scan  $\nu$  events selection and Monte Carlo simulations to identify reconstruction pathologies, explore reconstruction improvements and tune our selection algorithms for analyses

![](_page_12_Picture_7.jpeg)

![](_page_12_Picture_8.jpeg)

![](_page_12_Picture_9.jpeg)

### Pandora-based event reconstruction: track splitting

- Several studies to mitigate the problem of track splitting: e.g. the single track of a  $\mu$  is reconstructed as  $n \ge 1$  segments
  - Track splitting happening at detector boundaries: z = 0, at the cathode

  - Study of the systematic induced by track-splitting:

![](_page_13_Picture_6.jpeg)

![](_page_13_Picture_7.jpeg)

![](_page_13_Figure_10.jpeg)

Ongoing study of a stitching algorithm to join track pieces post-reconstruction based on MC

Study of a stitching algorithm on cosmic  $\mu$  in data: TPC tracks are identified after CRT-PMT info

# Pandora-based event reconstruction: data-driven systematics study

- Goal: understand and account for differences in reconstruction between data and MC
- Foreseen goal: data driven validation of ML algorithms
- Hit Activity Removal from Particles for Systematics (HARPS): operate on specific particles and reduce their size ↔ similar to starting with a lower energy particle and analyse the impact on reconstructed quantities

![](_page_14_Figure_4.jpeg)

Cartoon of the idea: HARPS on a sample of **protons** from

 $\nu$  + cosmics MC

Residual range

15

#### Pandora-based event reconstruction: summary and next steps

- Strong interplay with the needs/results of the ongoing analysis efforts in defining our goals: • we are increasing our effort towards evaluating reconstruction (detector) systematics
- Several efforts to mitigate the effects of the most relevant reconstruction pathologies at • different levels including track splitting, track vs shower misidentification, vertex reconstruction
- Next steps foreseen: continuous validation of the reconstruction chain and (re)training of the • ML algorithms employed in several points of the reconstruction any time relevant changes to signal processing at previous stage are included in the data processing chain

![](_page_15_Picture_5.jpeg)

### Machine Learning (ML) based LArTPC event reconstruction

![](_page_16_Picture_1.jpeg)

#### ML-based LArTPC event reconstruction: end to end reconstruction chain

![](_page_17_Figure_3.jpeg)

![](_page_18_Figure_1.jpeg)

![](_page_18_Figure_2.jpeg)

![](_page_19_Figure_1.jpeg)

identify vertex, start/end points

- fragments at PPN

![](_page_19_Picture_6.jpeg)

![](_page_20_Figure_1.jpeg)

# ML-based event reconstruction: performance

![](_page_21_Figure_1.jpeg)

#### ML-based event reconstruction: current effort and next steps

- Continuous effort to improve the performance of the end-to-end ML-based reconstruction • chain as a whole exploiting both MC simulations and visual scanning info
- Several physical analyses underway in ICARUS using ML-based reconstruction: •
  - Beyond Standard Model physics: Higgs-portal scalar decays,  $S \rightarrow ee$ , (J.Dyer) • see her talk tomorrow!

![](_page_22_Picture_5.jpeg)

![](_page_22_Picture_6.jpeg)

23

#### Thank you for your attention!

![](_page_23_Picture_1.jpeg)

![](_page_23_Picture_2.jpeg)

#### Back-up slides

![](_page_24_Picture_1.jpeg)

### Neutrino physics: oscillations and the sterile neutrino puzzle

• towards the possible existence of non-standard heavier sterile neutrino(s)

![](_page_25_Figure_2.jpeg)

LSND and MiniBooNE reported anomalous signals of  $\nu_{\rho}$  excess at low E: this could imply an additional term  $\Delta m_{
m new}^2 \sim 1.0 \ {
m eV}^2$  driving  $u_\mu 
ightarrow 
u_e$  oscillations at small distances and pointing

> A clear tension between appearance and disappearance results is also observed so the possibility to measure both channels with the same experiment is extremely helpful to understand the current physics scenario

![](_page_25_Picture_6.jpeg)

### The Short Baseline Neutrino (SBN) physics program

![](_page_26_Figure_1.jpeg)

The combined analysis of near and far detector will allow a sensitive search with  $5\sigma$  sensitivity in both appearance and disappearance channels in 3 years of data taking

Ann.Rev.Nucl.Part.Sci. 69 363-387 (2019)

![](_page_26_Picture_4.jpeg)

### Event reconstruction in LAr TPCs

- Goal: take the electronic signals acquired by various subsystems and combine them to extract physical ulletquantities related to neutrino interactions happened within the detector:
  - **TPC** readout signals go from waveforms on 3 wire planes to showers and tracks ٠
  - Light detector (PMT) readout signals go from waveforms to hits clustered into flashes •
  - Cosmic Ray Tagger (CRT) signals to reduce cosmic rays background are collected into hits ullet
  - Tools to match info between TPC, CRT, PMT and fiducialize detector volume, mitigate background, • increase sensitivity by filtering events

![](_page_27_Picture_6.jpeg)

Several activities: signal processing (upstream reconstruction), pattern-recognition, calorimetry, particle identification (*downstream* reconstruction)

Disclaimer: I'll mostly refer to ICARUS TPC downstream reconstruction

![](_page_27_Figure_11.jpeg)

![](_page_27_Picture_13.jpeg)

### The ICARUS TPC reconstruction chain

![](_page_28_Figure_1.jpeg)

### LAr TPC images: different event displays to help understanding reconstruction

![](_page_29_Figure_2.jpeg)

Several event displays (TITUS, LArSoft, DECAF) to analyze 2D images of hits and reco objects and help understanding reconstruction (issues)

splitting stitching algorithms) 30

#### Signal processing: foreseen change from 1D to 2D deconvolution

Wire signals are a convolution of electric field and electronics responses: •

$$M(t') = \int_{-\infty}^{\infty} R(t, t') \cdot S(t) dt$$

Measured signal Response function

Original signal can be extracted (**1D deconvolution**) as the inverse Fourier transform of  $S(\omega) = \frac{M(\omega)}{R(\omega)} \cdot F(\omega)$ 

with  $F(\omega)$  a filter (noise + zeros of the response function)

2D deconvolution to account for induced charge effects of charge drifting in nearby sense wire regions: improvement of the charge resolution  $\rightarrow$  higher  $\varepsilon$  on hits reconstruction for specific track classes

![](_page_30_Figure_8.jpeg)

#### TPC signal calibration

• muons (MIP) crossing the cathode and stopping/decaying in the active LAr volume

![](_page_31_Figure_2.jpeg)

East TPC, West Cryostat - Collection Plane

TPC calibration is based on the study of the ionization energy loss per unit length (dE/dx)versus residual range, i.e. distance from the end of the reconstructed TPC track, for cosmic

> Ongoing effort to tune TPC signal response to improve data/Monte Carlo agreement and to include the spatial variations observed in detector response to CR muons

Further details in <u>Eur. Phys. J. C 83:467 (2023)</u>

![](_page_31_Picture_7.jpeg)

![](_page_31_Picture_8.jpeg)

### Pandora-based event reconstruction

- Pandora (https://github.com/PandoraPFA) is a multi-algorithm pattern-recognition software with • LArSoft interface (https://larsoft.org) commonly used in detectors based on LAr technology to:
  - Cluster the objects together into reconstructed particles in 3D by joining information (hits) from the • TPC wire planes into a reconstructed interaction (i.e. a *slice*);
  - Reconstruct the interaction vertex, i.e. the common point where reconstructed particles originate and thus the point where the  $\nu$  candidate interacted;
  - Reconstruct **particle hierarchy** (parent/child particles);
  - Classifies particles as track-like ( $\mu$ , p,  $\pi^{\pm}$ , ...) or shower-like ( $e, \gamma$ ...) •
- There is a series of algorithms that one can alter/expand or replace with alternatives
- Machine Learning algorithms, e.g. Boosted Decision Trees (BDTs) are used in 3 steps of the chain: Slice identification to separate candidate  $\nu$  events from cosmics

  - Vertex selection from candidate important points
  - Track vs shower discrimination

![](_page_32_Picture_11.jpeg)

# Pandora-based event reconstruction

 Ultimate output of Pandora is reconstructed interaction hierarchies:

![](_page_33_Figure_2.jpeg)

calorimetry, PID.

![](_page_33_Figure_4.jpeg)

• <u>https://github.com/PandoraPFA</u>

# Pandora-based event reconstruction: new BDT training to discriminate tracks and showers

- BDT based on a set of reconstruction variables:
   8 geometrical (5 calorimetrical) from the
   3D coordinates (charge) of the hits
- Output is a *track score:* parameter in range [-1,1] track-like (if  $\geq$ 0), shower-like (if <0) particle

New training based on BNB  $\nu$ -only ICARUS MC recently introduced

- 3 additional charge variables to improve the discrimination capability
- Cross-Validation strategy to maximize the classification efficiency
- training sample with  $n_{tracks} = n_{showers}$
- good events: only events from  $\nu$  interactions with  $n_{hits} \geq 15$  for  $n_{views} \geq 2$

![](_page_34_Figure_9.jpeg)

![](_page_34_Figure_10.jpeg)

#### Pandora-based event reconstruction: new BDT training to discriminate tracks and showers

- Validation to exclude bias on the event selection, i. e. dependence on  $E, \theta_{xz}, \theta_{yz}, L_{track}$

![](_page_35_Figure_3.jpeg)

Sample:  $\mathcal{O}(5 \cdot 10^4)$  MC events BNB  $\nu_{\mu}, \nu_e$  only, NuMI  $\nu$  only w/ (w/o) good reconstruction [\*\*]

### Track score BDT variables for track/shower discrimination

- The BDT uses 10 input variables: •
  - 1. <u>Length</u>: estimate of length of the reconstructed particle
  - (divided by length so it's a fraction and not length correlated)

  - 4. <u>Sliding linear fit</u>: Estimate of the RMS averaged on planes (divided by length...)
  - <u>Vertex distance</u>: distance from the interaction vertex to the start of the particle 5.
  - relating to a few points at the beginning and at the end of the particle

2. <u>Sliding linear fit</u>: Estimate of difference with respect to a straight line averaged over planes

3. <u>Sliding linear fit</u>: Estimate of the largest gap averaged on planes (again divided by length)

6. <u>Difference in beginning and end direction of the reconstructed particle</u>: computes an angle

![](_page_36_Picture_14.jpeg)

### Track score BDT variables for track/shower discrimination

- The BDT uses 10 input variables: •
  - 7. Principal Component Analysis: secondary eigenvalue / primary (estimate of how linear the particle is)
  - 8. <u>Principal Component Analysis</u>: tertiary eigenvalue / primary (estimate of how linear the particle is)
  - 9. <u>Charge variable 1</u>: fractional spread of charge values calculated as follows:  $C_1 = \frac{\sigma/\sqrt{N}}{\mu}$  where  $\mu = \sum_{hit} q_{hit}$  (mean cl
  - $q_{tot}$

charge), 
$$\sigma^2 = \sum_{hit} (q_{hit} - \mu)^2$$
,  $\sigma/\sqrt{N}$  an RMS/mean

10. Charge variable 2: fraction of the total charge that is near the end of the particle  $C_2 = \frac{q_{end}}{q_{end}}$  where  $q_{tot}$  is the total charge,  $q_{end}$  the charge of the 10% hits near the end

38

- Halo total ratio: in the shower hypothesis, the fraction of charge in the external halo, ٠ evaluated summing the energy of the hits whose transverse distance ( $R_{T}$ ) to the cluster direction (outcome of PCA) is above 20% of the Moliere Radius ( $R_{M} = 10$  cm);
- Concentration: in the shw hp, the ratio between the concentration and the total charge, • where concentration is the sum of  $E/R_{T}$  for all the hits and the total charge is halo + cone charge, cone (halo) includes hits with  $R_T < (>) 0.2 R_M$ ;
- **Conicalness:** in the shw hp, this variable quantifies the how the charge is distributed in ٠ the cone and increases if the charge is concentrated in the final part of the cone, it is computed as the ratio between charge in the final part/charge in the initial part of the cone (weighted by  $R_{\tau}^2$ ) normalized to the ratio total end charge/total start charge.

![](_page_38_Picture_5.jpeg)

#### Pandora-based event reconstruction: study of systematics and performance

- ullet
- ٠

![](_page_39_Figure_3.jpeg)

Goal: understand and account for differences in reconstruction between data and MC

Hit Activity Removal from Particles for Systematics (HARPS): the basic idea is to operate on picked particles and reduce their size (e.g. take a long, clear proton and make it shorter by removing hits at the beginning of the track  $\leftrightarrow$  similar to starting with a lower energy proton) and analyse the impact on reconstructed quantities - data driven validation of ML algorithms

> Example: HARPS on a sample of **protons** from  $\nu$ +cosmics MC

40

# Pandora-based event reconstruction: improvements to MC simulations

- Difference in data and MC: t = 0 in an event was different:
  - In data: time of the trigger
  - In MC: start of the beam time
- Can lead to the effect of splitting the tracks if the event start at *t* > 0, particularly relevant for NuMI (beam duration of the beam spill is 9.6 µs) as shown in the cartoon

![](_page_40_Figure_5.jpeg)

![](_page_40_Picture_6.jpeg)

41

![](_page_41_Figure_1.jpeg)

![](_page_41_Figure_2.jpeg)

![](_page_42_Figure_1.jpeg)

Deghosting: use U-ResNet to identify and remove artifacts of the reconstruction

![](_page_42_Figure_3.jpeg)

![](_page_42_Picture_4.jpeg)

![](_page_43_Figure_1.jpeg)

![](_page_43_Figure_2.jpeg)

![](_page_43_Figure_3.jpeg)

![](_page_44_Figure_1.jpeg)

Density based clustering (DBSCAN) used to cluster particle fragments that belong to a common semantic class, i.e. break track/shower fragments at PPN/where they touch

#### Dense clustering

![](_page_44_Picture_5.jpeg)

![](_page_45_Figure_1.jpeg)

![](_page_45_Figure_3.jpeg)

![](_page_45_Picture_4.jpeg)

![](_page_46_Figure_1.jpeg)

- Traditional energy reconstruction
- range-based reconstruction for muons and protons
- calorimetric approach for electrons

![](_page_46_Figure_5.jpeg)

![](_page_47_Figure_1.jpeg)