Electromagnetic Secondaries With PBTTTF ARXIV: <u>2401.06843</u>

SBN TH+EXP WORKSHOP | SANTA FE, NM | FEBRUARY 2024

Neutrino Theory Network

Motivation & Context

Muons, Neutrinos

2

DARK SECTORS | SM SINGLETS, PORTALS & NEW PHYSICS

- If light new physics exists it must be a gauge singlet.
- Possibly complex dark sector (e.g. SM-like).
- Few singlet operators available. Focus on "portals".

Motivation

- Q: How many ways can light new physics couple to the SM?
- A: Not many once you restrict to low-dim operators!

• • •

$\phi^2 |H|^2$ or LHN or $B^{\mu u}B'_{\mu u}$ **Z-Prime** HNS

Existing Searches

10⁷

Dieletric

Stack

(pres

Neutrino Experiments

- One strategy is to precisely sculpt a signal.
- The other is to just win with brute force.

Neutrino Experiments

Produce huge flux pions.

Powerful neutrino beam.

Powerful dark sector beam.

Electromagnetic Secondaries

Electrophilic Light New Physics

Dark Sector Production At Accelerator Energies

- The 3 GeV beam at JSNS is a far cry from the 120 GeV for DUNE.
- High energy protons make high energy pions and kaons etc.
- Many more production channels are available.
- ~ (10 100) GeV

Option 1: Meson Decays PROMPT $D^+ \to K^+ X$ $\pi^0 \rightarrow \gamma X$

~ (10 – 100) GeV

Option 2: Primary Production

PROTON BREMMSTRAHLUNG

$pp \rightarrow ppX$

~ (10 – 100) GeV

$\sim (10 - 100) \text{ G}$

protons

Characteristic length between collisions

JMFP

• Characteristic length between hard collisions X_H

- Hadrons "down convert" energy into pions.
- Every generation is a new chance to make a BSM particle.
- Multiplicity of interactions grows with energy.

NEW RESOURCE BUT HARD STUDY SYSTEMATICALLY.

ELECTRONS & PHOTONS

• Characteristic length between **hard** collisions X_0

Main reactions are

 $\gamma Z \rightarrow e^+ e^- Z \quad e^\pm Z \rightarrow e^\pm \gamma Z$

• Multiplicity of interactions grows with energy.

Radiation length

ELECTRONS & PHOTONS

• Characteristic length between **hard** collisions X_0

Main reactions are

 $\gamma Z \rightarrow e^+ e^- Z \quad e^\pm Z \rightarrow e^\pm \gamma Z$

• Multiplicity of interactions grows with energy.

NEW RESOURCE FOR DARK SECTORS. CAN BE COMPUTED PERTURBATIVELY.

Radiation length

Hadronic And Electromagnetic Cascades

Consider a particle propagating through medium

ELECTRONS & PHOTONS

• Characteristic length between **hard** collisions X_0

Main reactions are

 $\gamma Z \rightarrow e^+ e^- Z \quad e^\pm Z \rightarrow e^\pm \gamma Z$

• Multiplicity of interactions grows with energy.

NEW RESOURCE FOR DARK SECTORS. CAN BE COMPUTED PERTURBATIVELY.

Radiation length

Previous Work On EM Secondaries

1807.058 PHYSICAL REVIEW LETTERS 121, 041802 (2018)

Novel Way to Search for Light Dark Matter in Lepton Beam-Dump Experiments

L. Marsicano,^{1,2} M. Battaglieri,¹ M. Bondí,³ C. D. R. Carvajal,⁴ A. Celentano,¹ M. De Napoli,³ R. De Vita,¹ E. Nardi,⁵ M. Raggi,⁶ and P. Valente⁷

PHYSICAL REVIEW D 102, 075026 (2020)

2006.09419

New production channels for light dark matter in hadronic showers

A. Celentano⁰, ¹ L. Darmé, ² L. Marsicano, ¹ and E. Nardi^{0^2}

PHYSICAL REVIEW D 98, 015031 (2018)

1802.03794

Dark photon production through positron annihilation in beam-dump experiments

L. Marsicano,^{1,2} M. Battaglieri,¹ M. Bondí,³ C. D. R. Carvajal,⁴ A. Celentano,¹ M. De Napoli,³ R. De Vita,¹ E. Nardi,⁵ M. Raggi,⁶ and P. Valente⁷

84	8	4

Event generation for beam dump experiments

Luca Buonocore,^{*a,b*} Claudia Frugiuele,^{*c*} Fabio Maltoni,^{*d,c*} Olivier Mattelaer,^{*d*} Francesco **Tramontano**^b 1812.06771

2108.03262

PHYSICAL REVIEW D 104, 115010 (2021)

Extending the reach of leptophilic boson searches at DUNE and MiniBooNE with bremsstrahlung and resonant production

Francesco Capozzi^(D),¹ Bhaskar Dutta,² Gajendra Gurung^(D),³ Wooyoung Jang,³ Ian M. Shoemaker,¹ Adrian Thompson,² and Jaehoon Yu³

Fully Geant4 compatible package for the simulation of Dark Matter in fixed target experiments *, **

M. Bondi^a, A. Celentano^a, R.R. Dusaev^b, D.V. Kirpichnikov^c, M.M. Kirsanov^c, N.V. Krasnikov^{c,d}, L. Marsicano^a, D. Shchukin^e

Previous Work On Electromagnetic Cascades

Event generation for beam dump experiments 1807.05884 PHYSICAL REVIEW LETTERS 121, 041802 (2018) Despite multiple groups and a reasonable amount of Novel Way t activity, no systematic comparison between results has L. Marsicar been made. Naive comparisons suggest large differences (orders of magnitude in some cases) New pr Want a systematic analysis to resolve discrepancies. Dai

L. Marsicano,^{1,2} M. Battaglieri,¹ M. Bondí,³ C. D. R. Carvajal,⁴ A. Celentano,¹ M. De Napoli,³ R. De Vita,¹ E. Nardi,⁵ M. Raggi,⁶ and P. Valente⁷

M. Bondi^a, A. Celentano^a, R.R. Dusaev^b, D.V. Kirpichnikov^c, M.M. Kirsanov^c, N.V. Krasnikov^{c,d}, L. Marsicano^a, D. Shchukin^e

Previous Work On EM Secondaries

PHYSICAL REVIEW LETTERS 121, 041802 (2018) 1807.05884 Event generation for beam dump experiments Despite multiple groups and a reasonable 2401.06843

Dark fluxes from electromagnetic cascades **C**

Nikita Blinov,^{1,2} Patrick J. Fox,³ Kevin J. Kelly,^{4,5} Pedro A.N. Machado,³ Ryan Plestid⁶ • VVANT A SYSTEMATIC ANALYSIS TO RESOLVE DISCREPANCIES.

Dai

L. Marsicano,^{1,2} M. Battaglieri,¹ M. Bondí,³ C. D. R. Carvajal,⁴ A. Celentano,¹ M. De Napoli,³ R. De Vita,¹ E. Nardi,⁵ M. Raggi,⁶ and P. Valente⁷

M. Bondi^a, A. Celentano^a, R.R. Dusaev^b, D.V. Kirpichnikov^c, M.M. Kirsanov^c, N.V. Krasnikov^{c,d}, L. Marsicano^a, D. Shchukin^e

Challenges At Neutrino Experiments

SMALL ANGLES

$\Phi(\theta, E) \quad \text{for} \quad \theta < \theta_c$

UNUSUALLY SENSITIVE TO ANGULAR SPREADING

Challenges At Neutrino Experiments

LARGE HIERARCHY OF ENERGIES

NEED TO WORRY ABOUT MANY GENERATIONS IN A SHOWER

Explicit Model: Dark Vector Boson $\mathscr{L} \mathcal{D} g \bar{e} \gamma_{\mu} e V^{\mu}$

• Vector boson of mass m_V couples to the electron vector current.

Explicit Model: Dark Vector Boson $\mathcal{L} \supset g \bar{e} \gamma_{\mu} e V^{\mu}$

detector.

 $\Phi_{det}(E_V)$

Our goal is to compute the flux from an EM cascade at the

Consider an event in a MC event record. $(\mathbf{p}, \mathbf{x})_e \rightarrow (\mathbf{p}', \mathbf{x})_e + (\mathbf{q}', \mathbf{x})_{\gamma}$

SM Frent \rightarrow BSM Event

$(\mathbf{p}, \mathbf{x})_e \rightarrow (\mathbf{p}', \mathbf{x})_e + (\mathbf{q}', \mathbf{x})_{\gamma}$

DRAW KINEMATICS FROM BSM DIST.

FOCUS ON PARENT

COMPUTE **BRANCHING RATIO**

$\frac{\mathrm{d}\sigma}{\mathrm{d}\Pi} = (2\pi)^4 \delta^{(4)}(\Sigma P) \left| \mathcal{M}_{e \to eV} \right|^2$

 $RR = \frac{O_{BSM}}{\sim} \approx \frac{O_{BSM}}{\sim}$ $\sigma_{\rm SM}$ $\sigma_{\rm tot}$

What Not To Do

- Static nuclear centres source Coulomb fields.
- Electrons treated as a homogeneous gas of electrons at rest.
- Atomic screening included for bremsstrahlung and pair production.

PROCESSES INCLUDED

• $e^{\pm}Z \rightarrow e^{\pm}\gamma Z$

• $\gamma Z \rightarrow e^+ e^- Z$

• $e^{\pm}e^{-} \rightarrow e^{\pm}e^{-}$

• $\gamma e \rightarrow \gamma e$

Continuous energy OSS Multiple Coulomb scattering.

PAIR PRODUCTION

Implemented In PETITE

PETITE

PETITE: Package for Electromagnetic Transitions In Thick-target Environments Monte Carlo generator for production of dark sector objects in thick-target experiments PETITE generates electromagnetic showers for incoming electron, positron or photon propagating through a dense medium, and includes the possibility of dark sector particle production.

Installation

To install, from the top directory run

pip install .

Dependencies

PETITE, its tutorials and tools require the following packages: numpy 1.24, vegas (>= 5.4.2), cProfile, pickle, matplotlib, scipy, datetime, tqdm, copy, sys, random and functools. Using pip install . should install all requirements, but if needed, you can manually install these packages with

pip install <package_name>==<version_required>

HTTPS://GITHUB.COM/KJKELLYPHYS/PETITE

Example Of Standard Model Uncertainty

- We can quantify how different models of multiple Coulomb scattering affect BSM flux predictions.
- Alters angular distribution and therefore acceptance at detector.

• We find that $e^+e^- \rightarrow V(n\gamma)$ is very sensitive to multiple Coulomb scattering.

• One has to properly (i.e. carefully) sample the distance travelled by a positron.

Bremsstrahlung Mismodeling With Spurious Correlations

PETITE is setup to easily support studies of systematic uncertainties.

Conclusions & Outlook

Conclusions

- a few GeV.
- conservative "rate \gg background" constraints.
- Systematic. (II) Flexible.
 - (III) Monte Carlo friendly.

Neutrino experiments are powerful factories for particles lighter than

Reliable flux predictions are needed if one wants to go beyond

We have a new framework for electromagnetic secondaries that is

