Axial-vector Form Factor from Lattice QCD

Rajan Gupta Theoretical Division, T-2
 Los Alamos National Laboratory, USA

Standard Model of Elementary Particles

$2^{\text {nd }}$ Short-Baseline Theory-Experiment Workshop,
Santa Fe, USA
April 4, 2024

Acknowledgements

Thanks to my collaborators (PNDME and NME collaborations)

Tanmoy Bhattacharya, Vincenzo Cirigliano, Yong-Chull Jang, Balint Joo, Huey-Wen Lin, Emanuele Mereghetti, Santanu Mondal, Sungwoo Park, Oleksandr (Sasha) Tomalak, Frank Winter, Junsik Yoo, Boram Yoon

Thanks for computer resources
OLCF (INCITE HEP133), ERCAP@NERSC (HEP, NP), USQCD@JLAB, LANL IC

- USQCD Community white paper:

Lattice QCD and Neutrino-Nucleus Scattering, Eur.Phys.J.A 55 (2019) 11, 196

- Snowmass 2021 White Paper Theoretical tools for neutrino scattering: interplay between lattice QCD, EFTs, nuclear physics, phenomenology, and neutrino event generators. e-Print: 2203.09030 [hep-ph]
- Rajan Gupta, Review at Lattice 2023: arXiv:2401.16614

Publications on Form Factors

AFF: R. Gupta et al, (PNDME) PRD 96, 114503 (2017)
VFF: Y-C Jang, et al, (PNDME) PRD 101, 014507 (2020)
AFF: Y-C Jang et al, (PNDME) PRL 124, 072002 (2020)
Both: S. Park, et al, (NME) PRD 105, 054505 (2022)
AFF: Y-C Jang, et al, (PNDME) PRD 109, 014503 (2024)
AFF: Tomalak, Gupta, Bhattacharya PRD 108, 074514 (2023)

Review at Lattice 2023: arXiv:2401.16614

Neutrino-nucleus scattering experiments

- Incoming neutrino energy and flux not known precisely
- Dynamics of struck Argon nucleus is too complex to simulate directly and connect to final states seen in the detectors

Need to know event-by-event the

- Neutrino energy
- Neutrino-nucleus cross-section To resolve the
- Mass hierarchy between $\left(v_{e}, v_{\mu}, v_{\tau}\right)$
- Mixing angles $\theta_{12}, \theta_{23}, \theta_{13}$
- Size of CP violation angle $\delta_{C P}$

Theory \rightarrow Event Generators

Factorization of the process

1. Wavefunction of the initial state of the "struck" nucleon within the nucleus
2. Axial vector FF of the nucleon
3. Intra nucleus evolution of the struck nucleon using nuclear many body theory
4. Evolution of final state particles to the detectors

> Complete implementation of these within Monte Carlo event generators with uncertainty quantification at each step needed for determining neutrino oscillation parameters

The v-n differential cross-section:

$$
\begin{aligned}
& \frac{d \sigma}{d Q^{2}}\binom{\nu_{l}+n \rightarrow l^{-}+p}{\overline{\nu_{l}}+p \rightarrow l^{+}+n} \\
& =\frac{M^{2} G_{F}{ }^{2} \cos ^{2} \theta_{c}}{8 \pi E_{\nu}{ }^{2}}\left\{A\left(Q^{2}\right) \pm B\left(Q^{2}\right) \frac{(s-u)}{M^{2}}+C\left(Q^{2}\right) \frac{(s-u)^{2}}{M^{4}}\right\} \text {, } \\
& A\left(Q^{2}\right)=\frac{\left(m^{2}+Q^{2}\right)}{M^{2}}\left[(1+\tau) F_{A}^{2}-(1-\tau) F_{1}^{2}+\tau(1-\tau) F_{2}^{2}+4 \tau F_{1} F_{2}\right. \\
& \left.-\frac{m^{2}}{4 M^{2}}\left(\left(F_{1}+F_{2}\right)^{2}+\left(F_{A}+2 F_{P}\right)^{2}-4\left(1+\frac{Q^{2}}{4 M^{2}}\right) F_{P}^{2}\right)\right], \\
& B\left(Q^{2}\right)=\frac{Q^{2}}{M^{2}} F_{A}\left(F_{1}+F_{2}\right), \\
& C\left(Q^{2}\right)=\frac{1}{4}\left(F_{A}^{2}+F_{1}^{2}+\tau F_{2}^{2}\right) . \\
& \left\langle N A_{\mu} N\right\rangle \rightarrow \text { linear combination of } F_{A}, \widetilde{F}_{P} \\
& \left\langle N V_{\mu} N\right\rangle \rightarrow G_{E}, G_{M} \\
& F_{A}=\text { axial form factor } \\
& G_{E}=F_{1}-\tau F_{2} \text { Electric } \\
& G_{M}=F_{1}+F_{2} \text { Magnetic } \\
& \tau=Q^{2} / 4 M^{2} \\
& M=M_{p}=939 \mathrm{MeV} \\
& m=\text { mass of the lepton }
\end{aligned}
$$

Lattice QCD Inputs for DUNE

Ideal: Matrix elements (form factors) for $v-{ }^{40} \mathrm{Ar}$ scattering

$$
\begin{aligned}
& \left.\left.\langle X| A_{\mu}(q)\right|^{40} A r\right\rangle \\
& \left.\left.\langle X| V_{\mu}(q)\right|^{40} A r\right\rangle
\end{aligned}
$$

Start with nucleons and different energy regions: factorization
$\langle p| J_{\mu}^{w}(q)|n\rangle$
Quasi-elastic
$\langle n \pi| J_{\mu}^{w}(q)|n\rangle,\langle\Delta| J_{\mu}^{w}(q)|n\rangle$
Resonant
$\langle n p| J_{\mu}^{w+}(q)|n n\rangle$
$\langle\mathrm{X}| J_{\mu}^{w}(q)|n\rangle$
2-nucleon
DIS

Build these into the nuclear many body Hamiltonian

Why simulating ${ }^{40} \mathrm{Ar}$ is challenging

 Wick contraction of $\quad \Gamma_{N}^{2}=|\Omega| \sum_{x} \overline{\operatorname{Ar}}(x, t) A_{\mu} \operatorname{Ar}(0,0)|\Omega|$

$$
\begin{aligned}
\mathrm{Ar} & =18 \mathrm{p}+22 \mathrm{n} \\
& =58 \mathrm{u}+62 \mathrm{~d} \text { quarks }
\end{aligned}
$$

1) Number of all possible contractions of u and d quarks and insertion of A_{μ} is still "impossible" to program and simulate
2) The signal will fall off with a high power of $e^{-\left(M_{N}-1.5 M_{\pi}\right) t}$

LQCD is QCD (a Quantum Field Theory) discretized on a lattice.

 Wick rotation turns QFT into a stochastic computational problem. Simulations of LQCD provide- The quantum vacuum of QCD
$>$ ensembles of gauge configurations
- N-point correlation functions
$>$ Hadrons and their interactions are built up using external probes on this vacuum
- Matrix elements $\left\langle N\left(p_{f}\right)\right| \boldsymbol{\mathcal { O }}\left(Q^{2}\right)\left|N\left(p_{i}\right)\right\rangle$ calculated between fully quantum hadronic states (wavefunctions)

Lattice QCD gives us Γ^{n}

2-point function $\longleftarrow \tau$

$$
\begin{aligned}
& \langle\Omega| \widehat{N}_{\tau}^{\dagger} \widehat{N}_{0}|\Omega\rangle \\
& \Gamma^{2 p t}(\tau)=\sum_{i}\left|A_{i}\right|^{2} e^{-E_{i} \tau}
\end{aligned}
$$

$$
\langle\Omega| \widehat{N}_{\tau}^{\dagger} O(t) \widehat{N}_{0}|\Omega\rangle
$$

$$
\Gamma_{O}^{3 p t}(t, \tau)=\sum_{i, j} A_{i}^{*} A_{j}\langle i| O|j\rangle e^{-E_{i} t-E_{j}(\tau-t)}
$$

$+$

Disconnected

Signal-to-noise falls as $e^{-\left(M_{N}-1.5 M_{\pi}\right) \tau}$ in nucleon n-point functions

Signal: $\Gamma^{2}=e^{-E_{N} \tau}$

Variance: $e^{-3 E_{\pi} \tau}$

$>$ To resolve a small mass gap $\left(M_{1}-M_{0}\right)$ requires large t

Spectral decomposition of Γ^{3}

Three-point function for matrix elements of axial current \mathcal{A}_{μ}

$$
\langle\Omega| \mathbb{N} \mathcal{A}_{\mu}(\mathrm{t}) \overline{\mathbb{N}}(0)|\Omega\rangle
$$

Insert $T=e^{-H \Delta t} \sum_{i}\left|n_{i}\right\rangle\left\langle n_{i}\right|$ at each Δt with $T\left|n_{i}\right\rangle \equiv e^{-H \Delta t}\left|n_{i}\right\rangle=e^{-E_{i} \Delta t}\left|n_{i}\right\rangle$

$$
\langle\Omega| \mathbb{N}(\tau) \cdots e^{-\mathrm{H} \Delta t} \sum_{j}\left|n_{j}\right\rangle\left\langle n_{j}\right| \mathcal{A}_{\mu} e^{-\mathrm{H} \Delta t} \sum_{i}\left|n_{i}\right\rangle\left\langle n_{i}\right| \cdots \overline{\mathbb{N}}(0)|\Omega\rangle
$$

$$
\sum_{i, j} \underbrace{\langle\Omega| \mathbb{N}\left|n_{j}\right\rangle}_{A_{j}^{*}} e_{\text {Matrix Elements }}^{-\mathrm{E}_{\mathrm{j}}(\tau-t)} \underbrace{\left\langle n_{j}\right| A_{\mu}\left|n_{i}\right\rangle}_{A_{i}} e^{-\mathrm{E}_{\mathrm{i}} t} \underbrace{\left\langle n_{i}\right| \overline{\mathbb{N}}|\Omega\rangle}
$$

E_{0}, E_{1}, \ldots energies of the ground \& excited states
$\mathrm{A}_{0}, \mathrm{~A}_{1}, \ldots$ corresponding amplitudes

Extracting Nucleon Charges

$$
\Gamma^{2}=\sum_{i} A_{i}^{*} A_{i} e^{-E_{i} \tau} \quad \Gamma^{3}=\sum_{i, j} A_{i}^{*} A_{j}\left(N_{i}|O| N_{j}\right) e^{-E_{i} t} e^{-E_{j}(\tau-t)}
$$

If only the ground state contributes $(\tau \rightarrow \infty)$

$$
\frac{\Gamma^{3}}{\Gamma^{2}}=\frac{\langle\Omega| \overline{\mathbb{N}} \mathrm{A}_{\mu} \mathbb{N}|\Omega\rangle}{\langle\Omega| \mathbb{N} \overline{\mathbb{N}}|\Omega\rangle} \rightarrow\left\langle N\left(p_{i}\right)\right| A_{\mu}\left(Q^{2}=0\right)\left|N\left(p_{i}\right)\right\rangle \rightarrow \boldsymbol{g}_{\boldsymbol{A}}
$$

- Otherwise, fit Γ^{3} using its spectral decomposition.
- Requires knowing the spectrum (energies E_{i}) \& amplitude A_{0} (from and $\Gamma^{2} ? ?$?)

Calculations of nucleon 2,3-point functions using LQCD are mature

Spectrum (energies $E_{i} \&$ amplitudes A_{i}) and ME are extracted from fits to the spectral decomposition of 2- and 3-point functions

$$
\begin{aligned}
\Gamma^{2 p t}(\tau) & =\sum_{i}\left|A_{i}\right|^{2} e^{-E_{i} \tau} \\
\Gamma_{O}^{3 p t}(t, \tau)= & \sum_{i, j} A_{i}^{*} A_{j}\langle i| O|j\rangle e^{-E_{i} t-E_{j}(\tau-t)} \\
& \text { Extract }\langle 0| O|0\rangle
\end{aligned}
$$

Radial excited States:
$\mathrm{N}(1440), \mathrm{N}(1710)$
Towers of multihadrons states
$N(\vec{k}) \pi(-\vec{k}) \quad>1200 \mathrm{MeV}$
$N(0) \pi(\vec{k}) \pi(-\vec{k})>1200 \mathrm{MeV}$

What do data look like?

Systematics in lattice calculations: Summary

- Statistics
- Signal falls as $e^{-\left(M_{N}-1.5 M_{\pi}\right) \tau}$
- Excited state contributions (ESC)

- Towers of $N \pi / N \pi \pi$ multihadron states starting at $\sim 1200 \mathrm{MeV}$
- Which ($N \pi / N \pi \pi$, radial, ...) states contribute?
- Fits to the spectral decomposition of Γ^{n} (truncated at 3 states)
- Chiral-Continuum-Finite-Volume (CCFV) extrapolation
$-\sigma_{\pi N}\left(\mathrm{a}, \mathrm{M}_{\pi}, \mathrm{M}_{\pi} \mathrm{L}\right)=\sigma_{\pi N}\left(0, \mathrm{M}_{\pi}=135 \mathrm{MeV}, \infty\right)+\cdots$

$\Gamma^{n} \rightarrow M E \rightarrow$ Axial-vector Form Factors, $G_{A}, \widetilde{G}_{P}, G_{P}$

On each [iso-symmetric] ensemble characterized by $\left\{a, M_{\pi}, M_{\pi} L\right\}$

$$
\begin{gathered}
\left\langle N\left(p_{f}\right)\right| A^{\mu}(q)\left|N\left(p_{i}\right)\right\rangle=\bar{u}\left(p_{f}\right)\left[\gamma^{\mu} G_{A}\left(q^{2}\right)+q_{\mu} \frac{\tilde{G}_{P}\left(q^{2}\right)}{2 M}\right] \gamma_{5} u\left(p_{i}\right) \\
\left\langle N\left(p_{f}\right)\right| P(q)\left|N\left(p_{i}\right)\right\rangle=\bar{u}\left(p_{f}\right) G_{P}\left(q^{2}\right) \gamma_{5} u\left(p_{i}\right) \\
\text { PCAC }\left[\partial_{\mu} A_{\mu}=2 m P\right] \text { relates } G_{A}, \tilde{G}_{P}, G_{P}
\end{gathered}
$$

Constraints once FF are extracted from ground state matrix elements

1) $\operatorname{PCAC}\left(\partial_{u} A_{u}=2 \widehat{m} \mathrm{P}\right)$ requires

$$
2 \widehat{m} G_{P}\left(Q^{2}\right)=2 M_{N} G_{A}\left(Q^{2}\right)-\frac{Q^{2}}{2 M_{N}} \tilde{G}_{P}\left(Q^{2}\right)
$$

2) In any [nucleon] ground state

$$
\partial_{4} A_{4}=\left(E_{q}-M_{0}\right) A_{4}
$$

3) G_{A}, \tilde{G}_{P} extracted from $\quad\left\langle N\left(p_{f}\right)\right| A_{i}(q)\left|N\left(p_{i}\right)\right\rangle$ must be consistent with $\left\langle N\left(p_{f}\right)\right| A_{4}(q)\left|N\left(p_{i}\right)\right\rangle$

Satisfying PCAC relation

Standard Analysis
Pre 2019

With $N \pi$
Post 2019

How large is the " $N \pi$ " effect?

Output of a simultaneous fit to $\left\langle A_{i}\right\rangle,\left\langle A_{4}\right\rangle,\langle P\rangle$ (called $\left\{4^{N \pi}, 2^{\text {sim }}\right\}$ fit) increases the form factors by:

$$
-\left[\begin{array}{l}
G_{A} \sim 5 \% \\
\tilde{G}_{P} \sim 45 \% \\
G_{P} \sim 45 \%
\end{array}\right.
$$

Standard 3-state fit to $\langle P\rangle$

Simultaneous 2-state fit to $\left\langle A_{i}\right\rangle,\left\langle A_{4}\right\rangle,\langle P\rangle$ correlators

Comparing axial form factor from LQCD

A consensus is emerging

Axial vector form factor

Comparing prediction of x -section using AFF from $v-D$ and PNDME with MINERvA data

T. Cai, et al., (MINERvA) Nature volume 614, pages 48-53 (2023); Phys. Rev. Lett. 130, 161801 (2023)

Oleksandr Tomalak, Rajan Gupta, Tanmoy Bhattacharya, PRD 108 (2023) 074514

Mapping the AFF

- $0<Q^{2}<0.2 \mathrm{GeV}^{2}$
- This region will get populated by simulations with $M_{\pi} \approx 135 \mathrm{MeV}, \mathrm{a} \rightarrow 0, M_{\pi} L>4$
- MINERvA data has large errors
- Characterized by g_{A} and $\left\langle r_{A}^{2}\right\rangle$
- $\mathrm{G}_{\mathrm{A}}\left(\mathrm{Q}^{2}\right)$ parameterized by a z-expansion with a few terms
- $0.2<Q^{2}<1 \mathrm{GeV}^{2}$
- Lattice data mostly from $M_{\pi}>200 \mathrm{MeV}$ simulations
- Competitive with MINERvA data. Cross check of each other
- $Q^{2}>1 \mathrm{GeV}^{2}$
- Lattice needs new ideas
- MINERvA and future experiments

Electric \& Magnetic FF

Electric

Magnetic

- The extraction of electric and magnetic form factors is insensitive to the details of the excited states
- Vector meson dominance $\rightarrow N \pi \pi$ state should contribute (some evidence)
- The form factors do not show significant dependence on the lattice spacing or the quark mass
- Good agreement with the Kelly curve. Validates the lattice methodology
- Improve precision and get data over larger range of parameter values

Looking ahead

Variational with Multi-hadron states NPB205 [FS5] (1982) 188

$$
\widehat{N} \rightarrow \widehat{N}+c \widehat{N \pi}
$$

$\left\langle n \pi^{+}\right| J_{\mu}^{+}(q)|n\rangle$

$\langle n p| J_{\mu}^{+}(q)|n n\rangle$

See

- Barca et al, 2211.12278, 2110.11908
- NPLQCD Collaboration, Phys.Rev.Lett. 120 (2018) 15, 152002
- Nuclear matrix elements from lattice QCD for electroweak and beyond-StandardModel processes, 2008.11160 [hep-lat]
$Q_{\max }^{2}$ under improvements in lattice calculations

$$
M_{\pi} \rightarrow 135 ; \quad a \rightarrow 0 ; L \rightarrow \infty
$$

- $Q^{2}=p^{2}-(E(p)-M)^{2}$
- $p=\frac{2 \pi}{L a} \boldsymbol{n}=\frac{2 \pi}{L a}\left(n_{1}, n_{2}, n_{3}\right)$
- Fixed $\beta=6 / g^{2}$ (fixed $\left.a\right)$
- $M_{\pi} \rightarrow 135 \mathrm{MeV}$ keeping $M_{\pi} L$ fixed $\Rightarrow Q^{2}$ decreases
- Fixed M_{π}, take $a \rightarrow 0$ keeping L in fermi fixed
- La fixed $\Rightarrow Q^{2}$ stays constant
- Fixed M_{π} and a : take $L \rightarrow \infty$
- p decreases $\Rightarrow Q^{2}$ decreases
$Q_{\text {max }}^{2}$ in lattice data will decrease but DUNE requires larger $Q_{\max }^{2}$

Summary

- Challenges in lattice calculations of nucleon matrix elements:
- Signal to noise degrades as $e^{-\left(M_{N}-1.5 M_{\pi}\right) t}$
- removing multi-hadron excited states to get ground state ME
- including multi-hadron in initial and/or final state for transition ME
- Continue to develop a robust analysis strategy for identifying and removing dominant excited states in various nucleon matrix elements
- Improve chiral and continuum extrapolation. Simulate at more $\left\{a, M_{\pi}\right\}$
- Current $0.04<Q^{2}<1 \mathrm{GeV}^{2}$. Extend to larger Q^{2} for DUNE
- Transition matrix elements
- Goal: Perform a comprehensive analysis of scattering data with input of lattice results for $g_{A}, G_{E}\left(Q^{2}\right), G_{M}\left(Q^{2}\right), G_{A}\left(Q^{2}\right), \widetilde{G}_{P}\left(Q^{2}\right)$

Improvements in algorithms and computing power are needed to reach few percent precision

