

Recent Demonstrations at ~MeV energies in the MicroBooNE Experiment

Will Foreman (IIT) on behalf of the MicroBooNE Collaboration

Short-Baseline Theory-Experiment Workshop LANL / Santa Fe, NM April 2-5, 2024

MeV-scale physics in LArTPCs

Phys. G: Nucl. Part. Phys. 50 033001

Topical Review resulting from Snowmass (Way more than can be fit into a 25 minute talk)

- 1. Introduction
- 2. LE physics and v LArTPC physics goals
 - 2.1 LE signatures in high-energy neutrino events
 - 2.2 LE signatures in BSM searches
 - 2.3 LE neutrino LArTPC physics
- 3. Modeling challenges for LE LArTPC physics
 - 3.1 Neutrino-argon cross-section physics
 - 3.2 Particle propagation and interaction in liquid argon
- 4. Detector Parameters
- 5. Reconstruction
- 6. Data acquisition / processing considerations

W. Foreman - SBN Workshop

A brief tour of energy scales...

Primary energy scales for accelerator v's

Neutron detection in GeV-scale v events

W. Foreman - SBN Workshop

Particle discrimination for BSM searches

Astrophysical neutrinos (not SBN, but still cool)

Demonstrations in ArgoNeuT

ArgoNeuT

Demonstration of MeV-scale physics in liquid argon time projection chambers using ArgoNeuT

R. Acciarri, ¹ C. Adams,² J. Asaadi,³ B. Baller,¹ T. Bolton,⁴ C. Bromberg,⁵ F. Cavanna,¹ E. Church,⁶ D. Edmunds,⁵ A. Ereditato,⁷ S. Farooq,⁴ A. Ferrari,⁸ R. S. Fitzpatrick,⁹ B. Fleming,² A. Hackenburg,² G. Horton-Smith,⁴ C. James,¹ K. Lang,¹⁰ M. Lantz,¹¹ I. Lepetic,^{12,*} B. R. Littlejohn,^{12,+} X. Luo,² R. Mehdiyev,¹⁰ B. Page,⁵ O. Palamara,¹ B. Rebel,¹ P.R. Sala,¹³ G. Scanavini,² A. Schukraft,¹ G. Smirnov,⁸ M. Soderberg,¹⁴ J. Spitz,⁹ A. M. Szelc,¹⁵ M. Weber,⁷ W. Wu,¹ T. Yang,¹ and G. P. Zeller¹

(ArgoNeuT Collaboration)

Phys. Rev. D 99, 012002 (2019)

W. Foreman - SBN Workshop

Wire

Demonstrations in ArgoNeuT

ArgoNeuT

Improved Limits on Millicharged Particles Using the ArgoNeuT Experiment at Fermilab

R. Acciarri,¹ C. Adams,² J. Asaadi,³ B. Baller,¹ T. Bolton,⁴ C. Bromberg,⁵ F. Cavanna,¹ D. Edmunds,⁵ R. S. Fitzpatrick,⁶ B. Fleming,⁷ R. Harnik,¹ C. James,¹ I. Lepetic,^{8,*} B. R. Littlejohn,⁸ Z. Liu,⁹ X. Luo,¹⁰ O. Palamara,^{1,†} G. Scanavini,⁷ M. Soderberg,¹¹ J. Spitz,⁶ A. M. Szelc,¹² W. Wu,¹ and T. Yang¹

(ArgoNeuT Collaboration)

Phys Rev Lett. 124, 131801 (2020)

Demonstrations in ArgoNeuT

Figure 7. 1D-CNN scores for simulated noise and signal wavefoms in the induction plane (right) and the collection plane (left).

CNN-based wire ROI finder JINST 17 (2022) P01018

Figure 8. Event display after applying the 1D-CNN ROI finder for the event shown in Figure 1 and Figure 2.

W. Foreman - SBN Workshop

Remaining Challenges

- Successful demonstrations in a small LArTPC... but can we do the same in large ones?
 - Lowering thresholds
 - Precise energy reconstruction
 - Controlling low-energy backgrounds

Critical for maximizing SBN's and DUNE's physics potential

Recent results from MicroBooNE address all three!

JINST 12 P07010 (2017)

MICROBOONE-NOTE-1076-PUB	(2020)		
MeV-scale Physics in MicroBooNE MICROBOONE-NOTE 1076-PUB		MICROBOONE-NOTE-1050-PUB	(2018)
The MicroBooNE Collaboration	\mathbf{Study}	of Reconstructed ³⁹ Ar Beta	
	Decays	at the MicroBooNE Detector	

Blip Reconstruction

- Techniques pioneered in ArgoNeuT have been further developed in MicroBooNE
- Dedicated algorithm class has since been written encompassing these tools → flexible integration into other reco & analysis workflows
 - Millicharged particle searches
 - v NC1p selection background mitigation
 - Neutron tagging
 - Radiogenic calibrations

April 4, 2024

Blip reconstruction in a nut-shell

1. Isolated hits identification

Hits *within* tracks > configurable length are vetoed; optional 2D masking in regions surrounding long tracks

2. Hit clustering per plane

Hit width ('RMS') defines proximity threshold for clustering in wire-time space

- 3. Cluster plane-matching
- 4. Crossing-wire requirement
- 5. Relative charge comparison

Ambient blips in MicroBooNE data

U-plane (induction) V-plane (induction) Y-plane (collection)

April 4, 2024

Radon studies in MicroBooNE

- During its 2021 R&D run, MicroBooNE explored radon's calibration potential by doping Rn into the active volume of LAr
 - 222 Rn has a 3.8 day half-life
 → mixes throughout active volume
 - ²¹⁴Po has a short 164 µs half-life → can tag the associated ²¹⁴Bi β

214Po α (7.7 MeV) $T_{1/2} = 164 \ \mu s$ ^{214}Bi (Q = 3.3 MeV)B

Heavily ionizing alpha dE/dx ~ O(100) MeV/cm ↑ Extreme "charge quenching" (e⁻-Ar⁺ recombination + collisional effects) → Signal is fainter, < ~4000 e⁻

7.7 MeV α deposits only as much charge as a ~**150-200 keV electron!** ('Electron-equivalent energy' = MeVee, KeVee)

Lowering the energy thresholds

27

April 4, 2024

Bi-Po candidate rate in radon-doping data

Usual filter configuration

Bi-Po candidate rate in radon-doping data

"Filter bypass"

Exciting results:

- Data-based confirmation of sensitivity at < 1 MeVee
- 2. Radon backgrounds removed by electronegative filtration

Remaining questions...

- What *is* the ambient Rn rate?
- Background rate from previous study would be equivalent to ~20 mBq/kg
- Higher purity selection is needed to resolve this

Taking a closer look...

- Follow-up study performed with improved reconstruction and signal selection
- Background determination via side-band

Results on radon-doped data

Calorimetric validation: 0-3 MeV β_{Bi}

Calorimetric validation: 7.7 MeV α_{Po}

MC energy resolution

$Bi \rightarrow Po$ rate in physics data

$Bi \rightarrow Po$ rate in physics data

Broader implications for SBN / MicroBooNE

Millicharged Particles MicroBooNE Simulation

Beam-induced BSM like millicharged particle signatures

See talk on BSM in µB from Justin Evans

low-E proton (missed by Pandora tracker?)

See talk on LEE in µB from Erin Yandel

Conclusions

- MeV-scale features in LArTPC events contain information that can enhance the physics potential of SBN experiments
- MicroBooNE has demonstrated MeV-scale capabilities to unprecedented levels for a large LArTPC
- Tools are being incorporated into other analyses and experiments

Thanks!

Photo-ionizing dopants

Improving LArTPC Performance with Photo-Ionizing Dopants, Joseph Zennamo

Solar neutrinos in DUNE

DUNE as the Next-Generation Solar Neutrino Experiment

Phys. Rev. Lett. 123, 131803

$$\Delta m_{12}^2$$
 probed by day-night flux asymmetry
 $A_{D/N} = (D-N)/\frac{1}{2}(D+N)$

Can break degeneracy between θ_{12} and $\phi(^{8}\text{Bi})$ by measuring two interaction channels via crude angular cuts: $\nu_{e} + {}^{40}\text{Ar} \rightarrow e^{-} + {}^{40}\text{K}^{*} \longrightarrow R_{\text{Ar}} \propto \phi(^{8}\text{B}) \times \sin^{2}\theta_{12}$ $\nu_{e,\mu,\tau} + e^{-} \rightarrow \nu_{e,\mu,\tau} + e^{-} \longrightarrow R_{e} \propto \phi(^{8}\text{B}) \times (\sin^{2}\theta_{12} + \frac{1}{6}\cos^{2}\theta_{12})$

FIG. 3. Estimated precision of the ν_e and $\nu_{\mu,\tau}$ content of the ⁸B flux, present (SNO [5, 53]) and future (DUNE), with the ellipse for DUNE alone. Based on a simplified analysis, with only statistical uncertainties (1σ) but assuming 2 d.o.f., and with SNO fluxes slightly rescaled to match their global-fit ⁸B flux. Note small axis ranges. Full analysis in text.

Energy resolution improvements in LAr

TABLE I.	Detection	thresholds	according	to the DUNE (CDR
document [5	5]. The valu	ues given co	orrespond t	o the kinetic en	ergy
of each part	ticle.				

	р	π^{\pm}	γ	μ	е	others
Thresholds (MeV)	50	100	30	30	30	50

- (1) *CDR thresholds*: Any particle created below the thresholds listed in Table I is lost.
- (2) *Total charge calorimetry*: Thresholds are set to zero and no information about the hadronic system other than the total ionization charge is used.
- (3) Detailed event reconstruction: Thresholds are low and recombination corrections are applied to each particle in the event individually.

FIG. 14. Simulations of reconstructed neutrino energies for $E_{\nu} = 3$ GeV true energy in the CC $\nu_e + {}^{40}$ Ar scattering process.

as described in the text.

W. Foreman - SBN Workshop

The histograms correspond to three different sets of assumptions,

Traditional reconstruction

- Wire signals are noise-filtered and processed with deconvolution algorithms
- ADC thresholded hit-finding via Gaussian fits to pulses
- Advantages:
 - Software infrastructure in place in LArSoft & demonstrated with published results
 - Based on 'first-principles', no need to train a network
- Disadvantages:
 - Lowering thresholds is challenging
 - Limited by noise floor

Remaining Challenges

- Successful demonstrations in smaller LArTPCs... but can we do the same in large ones?
 - Lowering thresholds
 - Precise energy reconstruction
 - Controlling low-energy backgrounds

Critical for maximizing

SBN's and DUNE's

physics potential

Remaining Challenges Opportunities?

Radon in dark matter experiments

- Existing methods of radio-purification in LAr:
 - rigorous material screening
 - outgassing campaigns
 - specialized systems for filtering Rn from gaseous argon
- DUNE aims to achieve < 1 mBq/kg to accomplish the goals laid out in previous slides
- How will we accomplish this?
 - Filtration in the gaseous phase will be more challenging at large scale

Bq = decays per second

¹DarkSide-50: ~2.1 µBg/kg ²DEAP-3600: < 0.2 µBq/kg ¹ Phys Rev D 98, 102006 (2018) ² Phys Rev D 100, 022004 (2019)

The MicroBooNE Detector

2017 JINST 12 P02017

 $\sim 10m \times 2.5m \times 2.3m$

Signal backgrounds

²¹⁴Bi
$$\rightarrow$$
 ²¹⁴Po + β + N γ

BiPo signal can be faked by other beta-emitting isotope decays

Doping radon into MicroBooNE

Doping radon into MicroBooNE

The original pipe will be cut, a conflat tee will be pressure fit, the source will be added, the tee will be sealed, the system will vacuum pumped, leak checked, and then operated

Radiological survey

Confirmed accumulation of radon in copper filter

- Looked at ratio of dE/dx for segments of ACP tracks near and far from the wire planes
- Confirmed average ~8 ms lifetime (weighted by β candidates over time), consistent with previous estimate from scaling the Bi214 beta spectrum

<u> </u>		-
Time period [hrs]	Far/near dEdx ratio	Equivalent lifetime [ms]
0-5	1.01(2)	> 180
5-10	0.940(8)	29 +/- 12
10-15	0.902(8)	18 +/- 3
15-20	0.855(11)	12 +/- 2
20-25	0.828(12)	9.6 +/- 1.8
25-30	0.820(9)	9.2 +/- 0.5
30-35	0.776(6)	7.2 +/- 0.5
35-40	0.758(7)	6.6 +/- 0.6
40-45	0.735(7)	5.9 +/- 0.4

Ion mobility in LAr

Some fraction of isotopes are positive ions \rightarrow drift toward cathode at very slow speeds

Phys Rev C 92 Results from LX	<u>2, 045504</u> (e in EXO-200
222Rn → 218Po⁺ v _d ~0.3 cm² / (kV s)	$f_{\alpha} = 50.3 \pm 3.0\%)$
214Pb → 214Bi+	$f_\beta=76.5\pm5.7\%$

Implies that measured Bi→Po rate can't be directly translated to a ²²²Rn rate, as some isotopes will have drifted and plated onto cathode

Figure 8. (Color online) Scatter plot of 218 Po drift distance versus time between the 222 Rn and 218 Po decays. Displacement (Δz) is defined as positive when movement is towards the cathode.

Toy MC assumptions

Decay Daughter	Half-life	Mean lifetime = T _{1/2} / In(2)	lon fraction	Drift speed at 273 V/cm
218Po	3.1 min	4.5 min	37% +/- 3% ^[80]	0.23 cm/s ^[80]
214Pb	27 min	39 min	Estimated 37%	Estimated 0.23 cm/s
214Bi	20 min	29 min	Estimated 56%	Estimated 0.23 cm/s
214Po	164 us	237 us	Not relevant	Not relevant

- [80] P. Agnes *et al.* (DarkSide), Measurement of the ion fraction and mobility of 218Po produced in 222Rn decays in liquid argon, J. Instrum. 14, P11018 (2019).
- [81] Albert and others (EXO-200 Collaboration), Measurements of the ion fraction and mobility of α - and β -decay products in liquid xenon using the EXO-200 detector, Phys. Rev. C **92**, 045504 (2015).

Converting charge to energy

MicroBooNE + LArIAT: Michel electron showers

For blips, assumed constant dE/dx (i.e., constant recombination)

ArgoNeuT: Nuclear de-excitation γ analysis

 Used NIST data on low-E e⁻, together with recombination, to directly relate Q_{reco} to energy

Energy spectra backgrounds

Simulated energy spectra

Calorimetric validation: α_{Po}

Using NEST-parameterized alpha charge-yield (QY) model https://zenodo.org/record/7577399

Figure 9: Charge yield model comparison with data from Po-210 and Cf-252

W. Foreman - SBN Workshop

Monte Carlo Efficiency

α QY: +/-20%		
	Systematic	Uncertainty
D_L : ± 1 σ , D_T : ± 30%	Alpha QY	$\pm 43\%$
	Electron diffusion	+26%, -17%
All charge scaled +/-5%	Energy scale	$\pm 15\%$
×	Recombination modeling	\pm 1.9%
'Birks' model, and enhanced	Total	+52%, -49%
recombination fluctuations		
	Final efficiency	/ for BiPo

Final efficiency for BiPo rate measurement: ε = (8.3 ± 4.2) %

Contributions to efficiency

	Relative probability (NEST)	Relative probability (LArG4)
Volume remaining after 2D cosmic track-masking	~86%	same
Bi214 beta decays producing collection plane hits*	~51%	same
Bi214 blips plane-matched	~62%	same
Po214 alphas producing collection plane hits	~22%	~43%
Total	~6%	~12%

* Using 'low-threshold' reconstruction

BlipReco code structure

ubreco/BlipReco (3.3 MB total)

Alg BlipAna_module.cc blipreco_badchanne blipreco_configs.f BlipRecoProducer_m CMakeLists.txt job ParticleDump_modul TrackMasker_module Utils	ls.txt cl odule.cc e.cc .cc	Util Blipu class class CMake	Jtils.cc Jtils.h ses_def.xml ses.h eLists.txt Types.h	
JATAIY struct Blip int bool int int float float	Yessen { ID isValid TPC NPlanes MaxWireSpan Charge Energy	= -9; = false; = -9; = -9; = -9; = -9; = -9;	<pre>// Blip ID / index // Blip passes basi // TPC // Num. matched pla // Maximum span of // Charge on calori // Energy (const dE // Energy (const dE</pre>	c checks nes wires on any plane cluster metry plane /dx, fcl-configurable)
float float int bool TVector3 float float	Time ProxTrkDist ProxTrkID inCylinder Position; SigmaYZ dX dYZ	= -999; = -9; = -9; = false; = -9.; = -9; = -9;	<pre>// Drift time [tick // Distance to cloe // ID of closest tr // IS it in a cone/ // 3D position TVec // Uncertainty in Y. // Equivalent lengt // Approximate leng</pre>	s] st track ack cylinder region? tor3 Z intersect [cm] h along drift direction [cm] th scale in YZ space [cm]
// Plane/ blip::Hit // Truth- blip::Tru // Protot double X(double X(cluster-specifi Clust clusters[matched energy eBlip truth; ■ ype getter func) { return Posi) { return Posi) { return Posi	<pre>c information kNplanes]; deposition tions tion.X(); } tion.Y(); } tion.Z(); }</pre>		

"Blip" data object prototype (C++ struct)

- Encodes XYZ, charge, & energy of 3D blips
- Includes distance to nearest track & track conecylinder region flag
- Truth-matching information also encoded

DataTypes.h

// True energy depositions				
struct True	Blip {			
int	ID	= - <mark>9</mark> ;	// unique blip ID	
int	TPC	= -9;	// TPC ID	
float	Time	= -999e9;	// time [us]	
float	Energy	= 0;	// energy dep [MeV]	
int	DepElectrons	= 0;	<pre>// deposited electrons</pre>	
int	NumElectrons	= 0;	<pre>// electrons reaching wires</pre>	
float	DriftTime	= - <mark>9</mark> ;	// drift time [us]	
int	LeadG4ID	= -9;	// lead G4 track ID	
int	LeadG4Index	= - <mark>9</mark> ;	// lead G4 track index	
int	LeadG4PDG	= -9;	// lead G4 PDG	
float	LeadCharge	= -9;	// lead G4 charge dep	
TVector3	Position;		// XYZ position	

April 4, 2024