MicroBooNE's BSM physics programme

Justin Evans

University of Manchester

BSM physics with MicroBooNE

BSM physics with MicroBooNE

Results shown in this talk: Millicharged particles Dark tridents arXiv:2312.13945 Heavy QCD Axions Phys. Rev. Lett. **132**, 041801 (2024) arXiv:2308.03924 Phys. Rev. Lett. 130, 011801 (2023) **MicroBooNE** Phys. Rev. D **106**, 092006 (2022) Inelastic Dark Matter Phys. Rev. Lett. 127, 151803 (2021) Phys. Rev. D 101, 052001 (2020) Made possible by a strong relationship Heavy Neutral **Higgs Portal** with theorists, providing models and Leptons Scalars sensitivity estimates

Constraints on eV sterile neutrinos

Erin Yandel's talk

Portals to dark sectors

Portals to dark sectors

New particles can be produced from meson decays

Large flux of charged & neutral mesons from high intensity proton beams

Two beamlines

Booster Neutrino Beam

- > 8 GeV protons
- 0.8 GeV mean neutrino energy
- On-axis

NuMI Beam

- 120 GeV protons
- 1.5 GeV mean neutrino energy
- ➤ ~8° off-axis

Incorporate a new righthanded singlet that mixes with the active neutrinos

Heavy neutral leptons produced in the beam

Decay to Standard-Model particles in the detector

8

- We assume $|U_{e4}| = |U_{\tau 4}| = 0$ and set limits on $|U_{\mu 4}|$
- > We focus on production via $K \rightarrow \mu N$

- > We assume $|U_{e4}| = |U_{\tau 4}| = 0$ and set limits on $|U_{\mu 4}|$
- > We focus on production via $K \rightarrow \mu N$
- > Most likely decay channel depends on m_N

BNB search: late-arrival trigger

Used the fact that heavy HNLs arrive later than light neutrinos

- Implemented a dedicated latearrival trigger to eliminate regular neutrino interactions
- Uses a 0.6 µs window after the usual BNB trigger

Phys. Rev. D 106, 092006 (2022)

Potential upgrade with ns timing

NuMI search: off-axis

Phys. Rev. D 106, 092006 (2022)

Higgs portal scalars

- Neutral singlet scalar, S
- Mixes with the Higgs, parameterized by an angle θ
- Produced in meson decays in the beam
- Decays into Standard-Model particles in the detector

Higgs portal scalars

Phys. Rev. Lett. **127**, 151803 (2021), Phys. Rev. D **106**, 092006 (2022)

Dark tridents

- Dark matter particles, χ , produced in decays of neutral mesons
- χ particles interact in the detector, mediated by a dark photon
- Free parameters are ε , α_D and M_{γ}/M_A

Drift Time

Uses pixel-based deep learning techniques

Dark tridents

Neutron-antineutron oscillations

Neutron transforms into an antineutron

- > Annihilates with a neighbouring neutron
- Produces a star-like topology of pions

We use pixel-based deep learning techniques to identify the topology

- > Achieve 70% signal efficiency
- Our techniques can improve DUNE's published efficiency for neutronantineutron searches by a factor of 7

Summary

Searches for BSM particles have been an integral part of MicroBooNE's physics programme

- Heavy neutral leptons
- Higgs portal scalars
- Dark tridents
- Light sterile neutrinos

More analyses are in the pipeline

> e+e- production, axion-like particles, millicharged particles

The full SBN programme, and DUNE, will be able to expand on these searches

We're eager for more ideas of models we can test with our data!

