

BSM New Physics Searches with SBND

Supraja Balasubramanian (FNAL) José I. Crespo-Anadón (CIEMAT)

on behalf of the SBND collaboration 2nd SBN Exp-Theory Workshop | 04 April 2024

SBND simulation: dark photon decay (m = 0.4 GeV)

Fermilab

CIEMA

partículas

SBND & BSM Physics

Two large-mass LArTPCs:

- 3D reconstruction with **mm-level resolution**.
- Fine-granularity calorimetry.
- **Excellent particle identification** with dE/dx information.
- Low energy thresholds, **sub-MeV to GeV**.

Photon Detection System (PDS):

- Novel technology: **PMTs** and **X-ARAPUCAs**.
- Scintillation & reflected visible light => high and uniform light yield and excellent timing resolution.

Cosmic Ray Tagger (CRT):

• Timing and position resolution allows for triggering on entering/exiting particles.

All of these features make SBND a multi-purpose detector that can look for **Beyond the Standard Model new physics**:

- Rare processes
- Low-energy signatures
- Challenging topologies

Learn more about SBND in Henry Lay's talk on Tuesday.

Can sample **multiple off-axis fluxes** with the same detector, due to proximity of SBND to the beam source.

Neutral mesons in the BNB = less focused

can produce a variety of BSM: light DM, axion-like particles, millicharged particles. Charged mesons in the BNB = more focused produce SM neutrinos.

=> Background reduction of SM neutrinos at off-axis angles for BSM new physics searches.

BSM Production in the Booster Neutrino Beam

A non-exhaustive list of BSM new physics that could be produced in the BNB.

4

Theorist-SBND Collaborations

BSM physics in the BNB may happen **anywhere between the proton-target collision and the detector.**

We need BSM generators that can be interfaced with any of the simulation steps.

Access to ns **timing** requires BSM flux simulations with a **detailed propagation of the particles.**

BSM Generators in SBND

In the SBN Program we have developed MeVPrtI: a BSM generator shared by SBND and ICARUS.

- Interfaces with the BNB and NuMI meson beam simulation.
- Modular approach to new physics in beam.
- Ray tracing.
- Modular approach to new particles decaying in detector.
- Fully integrated with LArSoft:

Carry time of flight and weights consistently.

Optimized workflow for large sample generation

Access to flux systematics evaluation

Used for HNL and model-indepenendent searches.

May expand to neutral mesons models in the future (currently using HEPEVT text files).

BSM Signatures in SBND

We introduce the model into our simulation & run reconstruction.

What SBND would see if these BSM phenomena interact inside SBND.

7

BSM Signatures in SBND

What SBND would see if these BSM phenomena interact inside SBND.

8

*not exhaustive.

Examples of Reconstruction Tools for BSM Physics*

Proton "Stub" Rejection

Tags and rejects low-energy stub-like charge depositions around a vertex that fail standard track reconstruction.

Electromagnetic Activity Reconstruction

Many BSM signatures produce electromagnetic activity.

E.g. the DM scatter electron is reconstructed $^{\sim}91\%$ of the time:

54% as a single shower,

10% as a shower+track,

8% as a single track,

8% as two showers,

and the rest as multiple tracks and/or showers.

Efforts to improve shower reconstruction completeness, purity and resolution are ongoing and will be shared across BSM searches.

Heavy Neutral Leptons (HNLs)

Right-handed fermion addition to the 3-neutrino SM paradigm.

Can couple to SM neutrinos by extended PMNS matrix couplings U_{a4} , $a = e, \mu, \tau$.

Could be produced by mesons in the BNB.

HNLs would decay in flight into SM observables with event rate $\propto |U_{a4}|^4$.

SBND is targeting several HNL decay channels: HNL → vee (M_{HNL} 30–140 MeV) HNL → v π^{0} (M_{HNL} 140–244 MeV) HNL → $\mu^{\pm}\pi^{\mp}$ (M_{HNL} 244–388 MeV)

Main backgrounds:

BNB \boldsymbol{v} neutral current events producing \boldsymbol{e} or $\boldsymbol{\gamma}.$

BNB **v** - electron scattering.

HNL Search in SBND

HNLs are heavier than neutrinos:

- Different arrival time profile.
- Can use a *delayed selection* to look *in between neutrino buckets*.
- Photon Detection System has ns timing resolution.
- SBND has demonstrated **3D** reconstruction with light information to resolve the BNB structure.

Find more details in Rodrigo Álvarez-Garrote's talk today

Preliminary sensitivity shows SBND potential to lead searches for $U_{\mu4}$ -driven mixing below 250 MeV.

New end-to-end sensitivity in progress.

- Machine learning tools for cosmic rejection using TPC, PDS and Cosmic Ray Tagger
- Electromagnetic shower reconstruction
- Low-energy hadron background tagging

Light Dark Matter

SBND can probe sub-GeV DM postulated by "thermal relic" models, compared to WIMP searches restricted to higher masses.

Vector portal DM models: light dark photon could be produced via meson decay or proton bremsstrahlung.

SBND is currently exploring **two models for DM production** in the BNB:

- Patrick de Niverville et al: production via neutral meson decay + p brem
- Bhaskar Dutta, Aparajitha Karthikeyan, Doojin Kim: production of long-lived dark photon via charged meson decay in addition to above modes.

Simulated dark matter-electron scattering $M_{\rm DM}$ = 0.05 GeV, $\alpha_{\rm D}$ = 0.5, ϵ = 10-3 Simulated dark photon to e+e- decay $M_{A} = 0.4$ GeV, kinetic mixing 1e-07

Light DM Search in SBND

SBND is looking for 2 types of DM interactions:

- DM-electron scattering
- Dark photon → e+e- decay

Main signature:

highly forward-going electromagnetic showers without accompanying hadronic activity.

Main backgrounds:

BNB \mathbf{v} neutral current events producing e or $\mathbf{\gamma}$. BNB \mathbf{v} - electron scattering.

Synergistic search with HNLs!

Model-independent search

Explore sensitivity to a **generic long-lived massive particle** X produced in the BNB beam and decaying in the SBND detector.

Work in progress to **expand MeVPrtl generator** to produce samples with **minimal assumptions** in a phase space not constrained by specific BSM models.

Synergistic with the reconstruction and analysis development for all the previous model-specific searches.

SBND's **ns timing resolution with light information alone** provides a topology-agnostic handle to search for any long-lived massive particle.

Simulated (top) and reconstructed (bottom) showing neutrino beam structure

Milicharged Particles

SBND event display showing a simulated millicharged particle

Regular Muon

Magill, Plestid, Pospelov, Tsai, PRL 2019 Harnik Liu Palamara, JHEP 2019

Hypothesized particles with **fractional electronic charge**, motivated by a cosmological anomaly (<u>EDGES</u>).

Could be a constituent of **dark matter**.

Produced by **neutral meson decay** in the BNB.

They would appear as **blips** or **faint tracks** pointing back to the target in SBND.

Charge vs Mass parameter space

Preliminary SBND sensitivity projection from simulation

Dark Neutrino Search with SBND Cosmic Ray Tagger

The SBND cosmic-ray tagger test **data from 2017–2018** can be used to search for BSM new physics particles that would **decay in the dirt around SBND** or in the cavern.

Dark neutrinos:

- A possible BSM explanation for the MiniBooNE low-energy excess.
- Produced via upscattering of SM neutrinos in the dirt.
- Decays to dilepton pairs.
- These can be tagged by the CRT upstream or downstream panels.
- SBND has an ongoing search for ND → I⁺I⁻ decay using CRT information.

Outlook

- SBND is great for BSM searches:
 - close proximity to a high-intensity neutrino beam target
 - off-axis fluxes
 - mm-scale spatial resolution and sub-MeV detection thresholds
 - nanosecond timing resolution
 - will collect 10 × 10²⁰ POT of data over
 3–4 years, starting in 2024.
- Diverse BSM program being pursued actively. More BSM searches being developed (heavy axions, dark neutrinos in TPC...)
- SBND has started several collaborations with theorists so that experimentalists and theorists can develop BSM searches together. Happy to look for more models!

SBND BSM conveners: jcrespo@ciemat.es; xiaoluo@physics.ucsb.edu

Backup

Booster Neutrino Beam [BNB] & **BSM Physics**

A high-intensity 8-GeV proton beam is focused on a Beryllium target, producing charged and neutral mesons, which decay to produce leptons, neutrinos, and potentially a variety of BSM new physics.

Neutrino composition of the beam: 93.6% v_{μ} , 5.9% ∇_{μ} , 0.5% v_{e} + ∇_{e}

SBND is particularly **close to the beam target (110 m).**

BSM new physics opportunities with the BNB:

Elastic Nucleon Events

- Modifications to the neutrino oscillation paradigm to explain the short-baseline anomalies.
- Novel physics produced in the beam (dark matter, heavy neutral leptons, etc).

Light Dark Matter production modes in the BNB. The x-axis shows the dark photon mass in this vector portal model.

SBND Light Collection & Triggering

Three-part Photon Detection System (PDS):

- Photomultiplier tubes (coated + uncoated)
- X-Arapuca devices (sensitive to UV + visible)
- Cathode covered with wavelength-shifting reflective foils

Primary scintillation and reflected light: improved and more uniform total light yield.

Energy reconstruction: can supplement LArTPC charge information with light for calorimetry.

Simulated (top) and reconstructed (bottom) neutrino beam structure

HNLs

- Two channels are being explored:
 - ν e e (30 140 MeV)
 ν π⁰ (140 244 MeV)
- Challenging topology signatures:
 - 2 electromagnetic showers
 - Beam-collimated
 - Highly overlapping
 - No hadron activities

• Dominant background comes from SM neutrinos:

- \circ v Argon neutral current interactions final states containing electrons/photons
- \circ v electron scattering
- **Efforts to improve reconstruction** completeness, purity and resolution are ongoing:
 - ML-techniques for cosmics ray rejections
 - Shower reconstruction
 - Proton identification for hadronic vertex veto
 - Muon/Pion identification for track-like veto
 - And others

.

- HNLs are **heavier** than neutrinos and hence travel at a **slower velocity**.
- BNB beam spill 1.6 µs long, made up of 81 buckets of 2 ns width separated by 19 ns.

Can utilise the **high timing precision** from the **Photon Detection System**.

- SBND has demonstrated the capability to 3D reconstruct using only scintillation light signals to retrieve the BNB bucket structure. (<u>MicroBooNE</u> first showed this reconstruction earlier this year)
 - **Select HNL events between the buckets**, with efficiency ~40% depending on mass.
- Can extend to other BSM heavy particles searches such as Higgs Scalar Portal, Axion-like particles as well as model-independent searches.