The potential BSM prospects of SBND-PRISM

Pedro Machado On behalf of the SBND collaboration 2nd Short-Baseline Experiment-Theory Workshop 2024

Area Normalized

110 meters

04/03/2024 2

Pedro Machado I The potential BSM prospects of SBND-PRISM

SBND is sufficiently close to the beam target such that effects due to the beam angular spread are noticeable

The physics

In meson two-body decays, there is a correlation among meson energy and nu energy and direction

04/03/2024 3

Pedro Machado I The potential BSM prospects of SBND-PRISM

For a given pion energy, give me θ_v and I give you E_v

The physics

In meson two-body decays, there is a correlation among meson energy and nu energy and direction

The effect

By looking off the beam axis, we scan different neutrino spectra

The beauty

This correlation is purely due to kinematics, which mitigates flux systematics Signal and background could have different angular dependences Only requires effort on analysis

- SBND can be logically divided in several slices
- At 110 m from the target, $1^{\circ} \sim 2 \text{ m}$
- Divide the detector in 8 slices of 0.2°

pmachado@fnal.gov

- 1. Shifts down in energy
- 2. Gets more peaked

SBND-PRISM in a nutshell

- 1. Shifts down in energy
- 2. Gets more peaked

Mean v_{μ} energy goes down by ~ 20%

What about v_e ?

SBND-PRISM in a nutshell

pmachado@fnal.gov

- 1. Shifts down in energy
- 2. Gets more peaked

Mean v_{μ} energy goes down by ~ 20%

Since v_e comes from three-body decays (mostly K), the flux is more "isotropic"

SBND-PRISM in a nutshell

ν_{ρ} events in each of the OAA regions

- 1. Shifts down in energy
- 2. Gets more peaked

Mean v_{μ} energy goes down by ~ 20%

Since v_e comes from three-body decays (mostly K), the flux is more "isotropic"

The relative v_e contamination increases going off-axis

SBND-PRISM in a nutshell

- 1. Shifts down in energy
- 2. Gets more peaked

Mean v_{μ} energy goes down by ~ 20%

Since v_e comes from three-body decays (mostly K), the flux is more "isotropic"

The relative v_e contamination increases going off-axis

SBND-PRISM in a nutshell

Why should we care?

Pedro Machado I The potential BSM prospects of SBND-PRISM

11 04/03/2024

A couple of searches that could benefit from SBND-PRISM

(ICARUS, μ B, bear with me here for a second...)

Single detector search is always tricky

 $N \propto (\phi_S + \phi_B)\sigma \sim (\phi_\mu P_{\mu e} + \phi_e)\sigma$

04/03/2024 12

Pedro Machado I The potential BSM prospects of SBND-PRISM

Sterile neutrinos

(ICARUS, μ B, bear with me here for a second...)

Single detector search is always tricky

 $N \propto (\phi_S + \phi_B) \sigma \sim (\phi_\mu P_{\mu e} + \phi_e) \sigma$

In principle, cross section uncertainties can wash out impact of $P_{\mu e}$

We do the best we can (e.g. v_{μ} to tune for v_e) but it's always good to have more handles

Sterile neutrinos

(ICARUS, μ B, bear with me here for a second...)

Single detector search is always tricky

 $N \propto (\phi_S + \phi_B) \sigma \sim (\phi_\mu P_{\mu e} + \phi_e) \sigma$

In principle, cross section uncertainties can wash out impact of $P_{\mu e}$

We do the best we can (e.g. v_{μ} to tune for v_e) but it's always good to have more handles

Sterile neutrinos

But if we can leverage SBND-PRISM, the cross section uncertainties could, in principle, be mitigated

$$N_i \propto (\phi_S^i + \phi_B^i) \sigma \sim (\phi_\mu^i P_{\mu e} + \phi_e^i) \sigma$$

Cannot fit all slices at once!

(ICARUS, μ B, bear with me here for a second...)

Single detector search is always tricky

 $N \propto (\phi_S + \phi_B) \sigma \sim (\phi_\mu P_{\mu e} + \phi_e) \sigma$

In principle, cross section uncertainties can wash out impact of $P_{\mu e}$

We do the best we can (e.g. v_{μ} to tune for v_e) but it's always good to have more handles

Sterile neutrinos

But if we can leverage SBND-PRISM, the cross section uncertainties could, in principle, be mitigated

$$N_i \propto (\phi_S^i + \phi_B^i) \sigma \sim (\phi_\mu^i P_{\mu e} + \phi_e^i) \sigma$$

Cannot fit all slices at once!

Currently studying what we can gain

Interplay between SBND-PRISM and ICARUS could be very interesting

Pedro Machado I The potential BSM prospects of SBND-PRISM 16 04/03/2024

17 04/03/2024

Pedro Machado I The potential BSM prospects of SBND-PRISM

18 04/03/2024

Pedro Machado I The potential BSM prospects of SBND-PRISM

19

04/03/2024 20

Pedro Machado I The potential BSM prospects of SBND-PRISM

21 04/03/2024 Pedro Machado I The potential BSM prospects of SBND-PRISM

Concept works well in enhancing BSM sensitivity at DUNE

More studies are needed for SBND and for different BSM scenarios: axions, DM, dark photons, light scalars, ...

SBND-PRISM in a nutshell

- The correlation among pion energy, and neutrino energy and direction allows for "scanning" the neutrino spectrum by looking at off-axis events in SBND
 - That correlation is due to kinematics, which could mitigate impact of flux systematics on experimental searches
- Several BSM scenarios could benefit from SBND-PRISM: sterile neutrinos (and all variations), dark matter, dark photons, axions, light scalars, ...

Neutrino angular spread in BNB have noticeable impact on SBND

How can we further leverage SBND-PRISM?

