Complimentary BSM Oscillation Experiments and Constraints

April 3, 2024 Bryce Littlejohn Illinois Institute of Technology

Neutrino Anomalies

- Let's zoom in and explore the non-FNAL anomalies
 - What's their status?
 - How does this relate to the broader neutrino program (and SBN)?

Note: no mention of IceCube or BEST in my slides here.

Note: I know others have covered global 3+1 picture; so I'll look forward

Electron-Flavor Disappearance

- Let's zoom in and explore another of these anomalies
 - What's their status?
 - How does this relate to the broader neutrino program (and SBN)?

(Most of this talk...)

Reactor Antineutrino Anomaly (RAA)?

Deficits in electron flavor detection rates at nuclear reactors

ava Bay, CPC 41 (2016)

0.4

0.6

0.8

1.2

1.4

1.6

1.8 Effective Baseline [km]

0.2

0.86

• From the <u>P5 Report</u>, recapping the last decade, and outlining US particle physics strategy for the next decade:

Over the past decades neutrino oscillation searches at length/distance scales of 1 MeV/m have found a number of anomalous results: The liquid scintillator neutrino detector (LSND) anomaly, the reactor antineutrino anomaly, the MiniBooNE low-energy excess and the gallium anomaly. These anomalies have not been confirmed, and the reactor antineutrino anomaly has been recently resolved. The remaining phase space

Exploring the Quantum Universe

RAA Resolution: Clear Sterile Searches

- Resolve the reactor anomaly by looking for variations between energy spectra of full detector versus individual baselines
 - Any wiggles in ratio is evidence of L/E nature of sterile neutrino oscillations

Example: The PROSPECT Experiment

- US-based: Oak Ridge Lab (Tennessee)
- Very short baseline: 6.7-9.2 meters
- Compact core: <50cm height, diameter

RAA Resolution: Clear Sterile Searches

- Resolve the reactor anomaly by looking for variations between energy spectra of full detector versus individual baselines
 - Any wiggles in ratio is evidence of L/E nature of sterile neutrino oscillations

RAA Resolution: Clear Sterile Searches

- Resolve the reactor anomaly by looking for variations between energy spectra of full detector versus individual baselines
- We have not observed any such effect so far, setting new bounds on oscillation at O(0.01-10) eV²
- Reflects decade's worth of effort from many continents: Daya Bay, DANSS, NEOS, RENO, PROSPECT, STEREO, and more.
- Note: Could use more coverage at high dm2... will get back to this later.

RAA Resolution: New Flux Measurements

- Resolve by probing the RAA deficit from reactor fuels with differing content ('fuel evolution' measurements)
- The more ²³⁵U a reactor is burning, the bigger the measured deficit. Indicates that bad flux predictions cause the RAA!
 - Parallel developments in nuclear <u>theory</u> and <u>experiment</u> support this picture
- Recent curiosities here: can comment more (in back-up...)

New P5 Period: Why SBL Reactors?

- Well-tailored reactor neutrino measurements have resolved a key outstanding neutrino physics question!
- With the RAA problem 'solved,' why do we still need shortbaseline reactor experiments in the next P5 period?
 - Let's ask this Q in general for e-flavor disappearance, too.

Over the past decades neutrino oscillation searches at length/distance scales of 1 MeV/m have found a number of anomalous results: The liquid scintillator neutrino detector (LSND) anomaly, the reactor antineutrino anomaly, the MiniBooNE low-energy excess and the gallium anomaly. These anomalies have not been confirmed, and the reactor antineutrino anomaly has been recently resolved. The remaining phase space

Reason I: Electron Flavor

- Reactors are the purest, highest-intensity source of electronflavor neutrinos that we have to work with
 - Purity and high stats are complimentary to mixed-flavor accelerator fluxes

Reason 2: Remaining Anomalies

• <u>**Three</u>** other short-baseline anomalies remain unexplained: Gallium, LSND, and MiniBooNE</u>

- Many pheno explanations impact reactor signatures, too
 - `3+1' sterile picture, for example
 - <u>'Non-vanilla' models too:</u> 3+I+NSI, 3+I+decay, others
- Key to unravelling/excluding BSM causes: dataset diversity
 - MeV <u>and</u> GeV; muon <u>and</u> electron; appearance <u>and</u> disappearance
 - Example: Testing MiniBooNE with MicroBooNE data <u>Arguelles et al, PRL 128 (2022)</u>

Reason 3: Outstanding Reactor Issues

- While the RAA is largely resolved, the oscillation picture from short-baseline reactors is not.
- Specifically: Neutrino-4 claims to observe high-amplitude, high-dm2 sterile oscillations
 - Other sources (accelerators) are insufficient to settle the issue

Horizons: Data From Existing Experiments

In the new P5 period, we can use existing short-baseline datasets to learn more about BSM phenomena

Horizons: New P5 Period Experiments

 In the new P5 period, major enhancements in sensitivity can come from 'ultimate' next-generation SBL reactor experiments

Reason 4: Exploring New Paradigms

- Reactors would be the most intense terrestrial source of hidden sector particles below the ~10 MeV scale
 - Production of new MeV-scale hidden sector particles in the radioactive crucible of a reactor
 - BSM imprints in reactor-based CEvNS signatures
 - Low-threshold detection with QIS sensors
 - Enabling support measurements (flux, spectrum) from IBD detectors

T.Akindele et al, hep-ex[2203.07214]

Search for Direct Evidence of New Particles

Pursue Quantum Imprints of New Phenomena

ical phenomena and long-baseline neutrino oscillation experiments. The adaptability and deployment flexibility of agile experiments, whether near beams or **reactors** offer promise for synergistic explorations of hidden sector particles and other phenomena in the evolving BSM field. Technology development, such as innovative materials and unique sensors,

Reason 4: Exploring New Paradigms

- Reactors would be the most intense terrestrial source of hidden sector particles below the ~10 MeV scale!
 - Production of new MeV-scale hidden sector particles in the radioactive crucible of a reactor
 - BSM imprints in reactor-based CEvNS signatures
 - Low-threshold detection with QIS sensors
 - Enabling support measurements (flux, spectrum) from IBD detectors

T.Akindele et al, hep-ex[2203.07214]

Workshop on Neutrino Science and Applications at HFIR

Apr 22 – 24, 2024 America/New_York timezone		https://indico.phy.ornl.gov/event/433/overview	Enter your search term
	Overview	The Workshop on Neutrino Science and Applications at HFIR will held at the Oak Ridge National Laboratory to explore opportunities provided by the unique High Flux Isotope Reactor (HFIR) facility (see	
	Timetable		
	Registration	attached Fact Sheet) to host a world-leading neutrino science experimental program over the next two decades that matches the spirit and utility of its sister laboratory at the Spallation Neutron Source (SNS)	
	Participant List	at ORNL, Neutrino Alley. Many physics topics accessible at a short distance from an intense and we	nce from an intense and well

Back to Reason I: Electron Flavor

- "Reactors are the purest, highest-intensity source of electronflavor neutrinos that we have to work with"... <u>CURRENTLY.</u>
- A new experiment type provides another option: IsoDAR!

- Compact Cyclotron \rightarrow <u>10 mA protons @ 60 MeV</u> (10x more current than existing)
- Target \rightarrow 600 kW power deposited \rightarrow ~1 mole $\bar{\nu}_e$ produced in 5 years from pure ⁸Li DAR
- Liquid Scintillator Counter \rightarrow ~2M Inverse Beta Decay ev., ~7000 $\bar{\nu}_e e^-$ ES ev.

New P5: More Electron Flavor!

- IsoDAR at Yemilab in South Korea: existing civil construction!
 - Accelerator and LSC R&D work continues; approaching shovel-ready status
 - Funding explorations active on both sides of the Pacific

Broad IsoDAR Physics

IsoDAR @Yemilab aims for broad, long-term physics program

More About High Δm^2 : Decay Experiments

- Electron-flavored weak decay: great coverage at very high Δm^2
 - Measure tritium beta, or measure EC nuclear recoil

Decay-At-Rest Electron Appearance (LSND)

- Let's zoom in and explore another of these anomalies
 - What's their status?
 - How does this relate to the broader neutrino program (and SBN)?

Into the New P5: JSNS²

- JSNS² at JPARC: like LSND, source nearly free of all $\overline{\nu}_e$
- Higher beam power (IMW), and higher statistics
- Shorter beam width (100ns), lower backgrounds

Thanks to J. Spitz for input.

Into the New P5: JSNS²

- In the new P5 period, we will directly test the LSND anomaly
 - Experiment is constructed and already taking data: 4e22 POT (36% of total)
 - 2nd detector (JSNS²-II) planned to start data-taking in late 2024.

JSNS2, hep-ex[2012.10807]

Thanks to J. Spitz for input. 25

First Public Analysis of JSNS² Data

- Some JSNS² data analysis is public: accidentals rates
 - Accidentals (pink): <u>9e-8</u>/spill/0.75MW
 - Osc signal (LSND BF) : <u>5e-8</u>/spill/0.75MW
 - While shape+rate can be easily measured, it looks like accidentals may be higher than initially anticipated
- Collaboration is hard at work at both oscillation and KDAR analyses
 - These results will both be highly relevant to the SBN program; different JSNS results may point SBN towards different new physics scenarios of interest!

JSNS2, hep-ex[2012.10807] JSNS2, hep-ex[2308.02722]

Summary

- In the new P5 period, there will be a lot more going on at short baselines than just FNAL SBN!
- We can expect new electron-flavor disappearance limits from reactors and weak decay experiments, and we have a new generation of Reactor-nu/IsoDAR-nu/weak-decay experiments that can be initiated in the new P5 period
- For electron disappearance, JSNS² has data in the can, and we can expect I- and 2-detector results in the new P5 period

Thanks!

Backup

Future Electron-Disappearance Limits?

- Let's make a hypothetical scenario where we started building IsoDAR and PROSPECT-II today:
 - Assume I year PROSPECT construction; 2 year IsoDAR + LSC construction

Future E-Flavor Weak Decay Limits?

- When do weak decay limits come into existence?
 - KATRIN Current: 2021
 - KATRIN Completion: 2025
 - Project-8, Phase III (T2): 2030
 - Project-8, Phase III (T): 2033
 - Project-8, Phase IV: 2040

How Do Reactors Make Neutrinos?

 Heavy isotopes fission make lighter isotopes and energy... and neutrons, betas, gammas and <u>electron antineutrinos</u>

Next Steps: PROSPECT-II

- PROSPECT-II will deliver x10 more IBD at HFIR than P-I, extending our statistics-limited oscillation limits
- Designed to be mobile and perform correlated measurements at different reactor types (commercial and highly-enriched)

33

PROSPECT-II R&D Highlights

- Developed/validated external calibration design JINST 18 PO6010 (2023)
- Retired risks associated with segment cross-talk JPhys G 49 (2022)
- Engineering design for inner tank underway; fabrication in 2024!
- Initiate Eng. design for PMT supports in 2024
- Details: P-II IAEA Talk

Optical grid insertion into

PTFE-lined tank

Recent Flux Evolution Curiosities

- I said: neutrinos (Daya Bay) and nuclear experiment/theory all agree that U-235 could be largely to blame for the RAA
- Recent DANSS results disagree? NEOS-II as well?
 - No longer perfect consonance in the picture above?
- We have yet to see Daya Bay's final results here; stay tuned.
- PROSPECT-II HEU+LEU can further hone this picture from the neutrino side

Key HFIR Features

- Reactor:
 - 85 MW core burns only ²³⁵U
 - <50cm height, diameter
- Facilities:
 - Many m² of floor (~3m wide) 6-10m from core
 - Concrete monolith beneath: high floor loading
 - Adjacent to ground-level exterior doors
- Backgrounds:
 - Lead wall shields gammas from reactor direction
 - Neutron experiments below shielded by monolith
 - < I mwe overburden: little to no cosmic shielding
- Access:
 - 24/7 data/physical access for authorized personnel
 - HFIR ops rarely (<<1/y) require detector movement

PROSPECT: Pretty Pictures

PROSPECT Assembly: note detector segmentation!

PROSPECT Installation: Rx on other side of the wall!

First fun event: cosmic hadronic shower!

Multi-Site Physics With PROSPECT-II

- Q: If we deploy one IBD detector at different reactor types, how well can we measure isotopic IBD yields?
 - A: with combined HEU+LEU measurement, four fission isotopes' yields can be measured at 10%-level accuracy (241Pu, 238U) or much better (235U, 239Pu)
 - JOIN US in fully developing the (detector-agnostic) physics case for correlated HEU+LEU deployment (isotopic spectra, oscillations, etc)!

Fujikake, BRL, Rodrigues, Surukuchi, PRD 107 (2023)

Key Detector Features

- Prompt e⁺ gives V_e energy estimate (>400 pe/MeV)
- Fully-contained, single-cell delayed n-⁶Li signal
- Prompt, delayed PSD differ from common background classes
- Double-end PMT readout and segmentation allows XYZ reco and topology cuts
- Reactor-on data rates are only manageable with zero-suppression of segments and PMT waveforms!

