A Bird's-Eye View of the MiniBooNE Anomaly

Adrian Thompson

Short Baseline Neutrino Workshop 2024

Adrian Thompson

(Northwestern U.)

Outline

- 1. Features of the MB Anomaly
- 2. Models
- 3. Methodology: Simulating the Focusing Horns
- 4. Fits and Phase Space
- 5. The nucleus
- 6. The SBN program

How sensitive are the short baseline experiments to the MiniBooNE anomaly?

What is the outlook for BSM physics?

CCM Collaboration, [2309.02599], to appear in PRD

Dutta, Kim, Thornton, <u>Thompson</u>, Van de Water *PRL 129 (2022) 11, 111803* [2110.11944]

(Northwestern U.)

The MiniBooNE Excess

Two main features of the excess:

- Excess in the target-mode runs, no observed excess in the dump-mode run
- 2. Excess shows distinct angular and energy spectra

		Excess	РОТ	Charged Mesons Focused?
Target Mode	Neutrino Mode	$560.6 {\pm} 119.6$	$1.875E{+}21$	π^+, K^+
	Anti-neutrino Mode	77.4 ± 28.5	$1.127\mathrm{E}{+21}$	π^-, K^-
Dump Mode		None	$1.86\mathrm{E}{+20}$	Isotropic

MiniBooNE, 2021 [2006.16883]

•

- MiniBooNE, 2019 [1807.06137]
- MiniBooNE, 2018 [1805.12028]

Big Picture: Lots of Models

- Sterile Neutrinos: short baseline oscillations
 - With matter effects
 - With decays
- Flavor violation
- HNLs
 - Decays
 - Upscattering
- Dark sector
 - DM Fermion upscattering
 - LLP Primakoff

1 γ , collinear 2 γ , and collinear e⁺e⁻ final state topologies

[Category	Model S	Signature	Anomalies			Deferences	
enology [<u>2203.07323]</u>			Signature	LSND	MiniBooNE	Reactors	Sources	References
		(3+1) oscillations	oscillations	1	1	1	1	Reviews and
								global fits [95,
	Flavor transitions							105, 107, 108
	Secs. 3.1.1-3.1.3, 3.1.5	(3+1) w/ invisible	oscillations w/ ν_4	~	-	~	~	[153, 157]
		(3+1) w/ sterile decov	Invisible decay	1	1	1	1	
		(5+1) w/ sterile decay	$ u_4 \rightarrow \phi \nu_e$	•				[161-164, 272]
	Matter offecto	(3+1) w/ anomalous	$ u_{\mu} \rightarrow \nu_{e} \text{ via} $	1	1	×	×	[145, 149,
		matter effects	matter effects					273-275]
	Secs 314 317	(3+1) w/ quasi-sterile	$ u_{\mu} ightarrow u_{e} w/$	1	1	1	1	[150]
B	Jees. J.1.4, J.1.7	neutrinos	resonant ν_s					
nen			matter effects					
ated Ph	Flavor violation Sec. 3.1.6	Lepton-flavor-violating	$\mu^+ \to e^+ \nu_\alpha \overline{\nu_e}$	1	×	×	×	[176,177,276]
		μ decays		1	1	~	~	[077]
Rel		changing	$\nu_{\mu}A \rightarrow e\phi A$	~		<u>^</u>	^	[277]
o Searches and I		bremsstrahlung						
	Decays in flight Sec. 3.2.3	Transition magnetic	$N \rightarrow \nu \gamma$	X	1	X	×	[208]
		mom., heavy ν decay						[]
		Dark sector heavy	$N \rightarrow \nu(X \rightarrow$	×	1	×	×	[209]
		neutrino decay	$e^+e^-)$ or					
Itri			$N \to \nu(X \to \gamma \gamma)$					
ite Paper on Light Sterile Neu	Neutrino Scattering Secs. 3.2.1, 3.2.2	neutrino-induced	$\nu A \rightarrow NA$,	1	1	×	×	[206, 207,
		upscattering	$N ightarrow u e^+ e^-$ or					210-217]
			$N \rightarrow \nu \gamma \gamma$					
		Transition magnetic	$\nu A \rightarrow N A$,	<i>√</i>		×	×	[40, 187, 189,
		mom. or polarizability	$N \rightarrow \nu \gamma \text{ or}$					190, 192, 194,
		pnotons	$\nu A \rightarrow \nu \gamma A$					221,235,278]
	Dark Matter Scattering Sec. 3.2.4	dark particle-induced	γ or e^+e^-	×	-	×	×	[218]
		dark particle induced	~	1	(¥	¥	[219]
		inverse Primakoff	<u>i</u>	v		<u> </u>	<u>^</u>	[210]
ξ		inverse i milakoli						

SBN Workshop 2024, Santa Fe

(Northwestern U.)

4

Dark Sector Particles and Long-lived Particles (LLPs) From the three-body decays of the charged pions

Generic Model Setup: some examples

$$egin{aligned} \mathcal{L}_S \supset g_\mu \phi ar{\mu} \mu + g_n Z'_lpha ar{u} \gamma^lpha u + rac{\lambda}{4} \phi F'_{\mu
u} F^{\mu
u} + ext{h.c.}, \ \mathcal{L}_P \supset i g_\mu a ar{\mu} \gamma^5 \mu + g_n Z'_lpha ar{u} \gamma^lpha u + rac{\lambda}{4} a F'_{\mu
u} ilde{F}^{\mu
u} + ext{h.c.} \end{aligned}$$

$$\begin{aligned} \mathcal{L}_V &\supset e(\epsilon_1 V_{1,\mu} + \epsilon_2 V_{2,\mu}) J_{\text{EM}}^{\mu} \\ &+ (g_1 V_{1,\mu} + g_2 V_{2,\mu}) J_D^{\mu} + (g_1' V_{1,\mu} + g_2' V_{2,\mu}) J_D'^{\mu} \end{aligned}$$

(2) Promptly decaying boson tto DM pairs, DM scattering in the detector

$$\mathcal{L}_{hp}^{\chi PT} \supset \frac{f_{\pi}^2}{4} \operatorname{Tr} \left[(\partial_{\mu} \mathbf{U} - iV_{\mu} \{ \mathbf{g}_X, \mathbf{U} \}) (\partial^{\mu} \mathbf{U} + iV^{\mu} \{ \mathbf{g}_X, \mathbf{U} \}) \right]$$
(2)

where the octet of meson states are contained in the Goldstone field Φ in the 3-flavor quark basis,

$$\mathbf{U} = e^{i\sqrt{2}\Phi/f_{\pi}}, \ \Phi = \begin{pmatrix} \frac{\pi^{0}}{\sqrt{2}} + \frac{\eta_{8}}{\sqrt{6}} & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{\pi^{0}}{\sqrt{2}} + \frac{\eta_{8}}{\sqrt{6}} & K^{0} \\ K^{-} & \overline{K}^{0} & -\frac{2\eta_{8}}{\sqrt{6}} \end{pmatrix}.$$
(3)

Further, for simplicity we select only up- and down-type quark couplings in the coupling matrix \mathbf{g}_X ;

$$\mathbf{g}_{X} \equiv \begin{pmatrix} g_{u} & 0 & 0\\ 0 & g_{d} & 0\\ 0 & 0 & 0 \end{pmatrix}$$
(4)

At the meson level, we get a scattering mediated by the Pi0-N-N interaction for free - this is incoherent but elastic in the low energy limit

...more discussion on inelasticity later

Vignette: RKHorn Simulation

- 1. Simulate the proton beam spot
- 2. Simulate pi+/- production in the target
- 3. Propagate pions out of the target and through the toroidal magnetic field of the horn system via Runge-Kutta
- Based on modelB routine used for MiniBooNE
- Work in progress; more sophistication and improvements planned: <u>github</u>

Dump vs. Target Mode Pion Fluxes

Result: Fits to the target mode distributions at MiniBooNE

Dutta, Kim, Thornton, Thompson, Van de Water *PRL 129 (2022) 11, 111803* [2110.11944]

We fit the resulting photoconversion rate to the combined Evis and cosine distributions in both target and dump mode with a binned log-likelihood

CCM Collaboration, [2309.02599], to appear in *PRD*

Coherent Captain Mills (CCM)

800 MeV protons, 100kW, 290 nsec pulsed beam

- CCM
- 90 degrees off-axis
- 23m target-to-detector
- 800 MeV *p* beam on W target
- Collected 1.79e21 POT in six week engineering run with the CCM120 detector (120 PMTs)
- CCM200 is online and taking data

Charged and neutral pions both unfocused and more isotropic at these lower energies \rightarrow offers a complementarity to the BNB source and an independent test of $g_{\pi 0}$

Complementarity at o(1 GeV) Proton Targets: CCM, LSND, KARMEN

• KARMEN:

- 110 degrees off-axis
- 17.5m target-to-detector
- 800 MeV *p* beam
- 4.6e22 POT
- LSND
 - 12 degrees off-axis

Analysis	E_{vis} Range	$\cos\theta$ Range
DAR	[18, 35] MeV	$-1 \le \cos \theta \le 1$
DIF	[60, 200] MeV	$\cos\theta < 0.8$

- 30m target-to-detector
- 800 MeV *p* beam
- Prompt and delayed searches (null results only)
- CCM
 - 90 degrees off-axis
 - 23m target-to-detector
 - 800 MeV *p* beam
 - Collected 1.79e21 POT in six week engineering run: CCM120

CCM Collaboration, [2309.02599], to appear in PRD

Other Constraints: Rare Pion Decays at PIENU

PRD 103, 052006, [2101.07381] PIENU Collaboration

\rightarrow Constrains the total branching fraction for our charged pion decay production mechanism

MicroBooNE: 1g0p analysis from the delta resonance search

We also take the existing data from the $1\gamma 0p$ search

(*MicroBooNE collaboration*, [2110.00409] *PRL* **128**, 111801)

We obtain a conservative limit from a binned log-likelihood on the visible energy data

Single Vector LLP Coupling to Pions: $m_v = 10$ MeV Fits and Projections

Single Vector LLP Coupling to Pions: $m_v = 20$ MeV Fits and Projections

- Moving to higher mass LLP vector bosons, the branching ratio for charged pion production drops
 - PIENU constraint becomes weaker on the coupling

Single Vector LLP Coupling to Pions: m_v =35 MeV Fits and Projections

- Moving to higher mass LLP vector bosons, the branching ratio for charged pion production drops
 - PIENU constraint becomes weaker on the coupling
- Moving beyond 35 MeV in the vector mass, we see that the preferred region for MB at 1 sigma favours a combination of neutral and charged components
 - The softer spectra from neutral pion decays balances the harder spectra from the 3-body decays at high mass
 - Dump mode also constrains arbitrarily large neutral pion coupling

Adrian Thompson (Northwestern U.)

<u>Achilles</u> Integration: Getting the full picture of Coherent + **Incoherent Scattering Topologies**

How does this picture look for the SBN program?

(Northwestern U.)

The Short Baseline Program: SBND, MicroBooNE & ICARUS

Forecasts:

Experiment	Distance (m)	Fiducial Volume (m^3)	Energy Threshold	РОТ
SBND	110	4m x 4m x 5m long	100 MeV	6.6e20
MicroBooNE	470	2.3m x 2.6m x 10.4 m long	100 MeV	13.2e20
ICARUS	600	2 x (3.0m x 3.16m x 17.95 m long)	100 MeV	6.6e20

y [m]

Projections for Sensitivity to the MiniBooNE Excess: SBND, MicroBooNE, ICARUS • We now forec

- We now forecast future sensitivity reaches for
- MicroBooNE
 - assuming ~2x POT and 3x efficiency w.r.t. the delta resonance search, scaling backgrounds
 - SBND and ICARUS for 50% signal efficiency and a range of critical event rates (3-100) which may depend on backgrounds
- In each case, we see that the SBN program is sensitive to MB excess!

The spatial distribution at the detector face: [X,Y]

Adrian Thompson

(Northwestern U.)

- Variations in the angular distribution of the signal flux vs. that of the neutrino signal
- may be visible in the x,y distributions at the detector

The different kinematics of 2-body and 3-body pion decays may be differentiable...

0.040

- 0.035

- 0.030

-0.025

-0.020

- 0.015

... depending on the mass, decay model

Conclusions

- We explored a large variety of LLP models as solutions to the MB excess
- We find a valuable complementarity between stopped-pion / 1 GeV-scale proton target experiments and the higher energy beam dumps / SBN program
 - BSM signal may be connected to both the neutral and charged pions
- Better modeling of scattering in generic MB-anomaly-solving models (e.g. photoconversion and upscattering) is needed to model the 1γNp or inelastic + intranuclear cascade channels → Achilles
- Ultimately the SBN program with MicroBooNE, SBND, and ICARUS will be sensitive to the MB anomaly

Backup

Adrian Thompson

(Northwestern U.)

Adrian Thompson (Northwestern U.)

Modeling the BNB Beam spot

Beam spot parameters: see D. W. Schmitz thesis

General Pion Decays

See Khodjamirian, Wyler, 2001

$$\mathcal{M} = i \frac{G_F}{\sqrt{2}} \varepsilon^{\mu} \left[\bar{u}_{\ell} \gamma^{\rho} (1 - \gamma^5) v_{\nu} \right] T_{\mu\rho}$$

$$T_{\mu\rho} = i \int d^4 x e^{ikx} \langle 0|T[j^V_{\mu}(x)j^+_{\rho}(0)]|\pi^+(p)\rangle$$
$$T_{\mu\rho} = \tilde{a}_0 g_{\mu\rho} + \tilde{b}_0 L_{\mu} k_{\rho} + \tilde{b}_1 L_{\rho} k_{\mu}$$
$$+ \tilde{b}_2 L_{\mu} L_{\rho} + \tilde{b}_3 k_{\mu} k_{\rho} + \epsilon_{\rho\mu\lambda\sigma} L^{\lambda} k^{\sigma} F_V$$

- L is total lepton momentum
- *k* is the massive vector momentum

Cross Sections: Photoconversion for a variety of Lorentz Represenations

Branching Fractions: Rare 3-body decays

