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Coherent CAPTAIN-Mills (CCM)

e 10 ton liquid Argon (LAr) scintillation and
Cherenkov detector

e Largest photo-cathode area of any
light-based LAr detector

e 2008"PMTs provide 50% photo-coverage

of a 5 ton fiducial volume
e 3ton active vetoregion
e Recently completed engineering run
e Mid-way through 3yr data taking period
o 2.25x10?2POT
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Coherent CAPTAIN-Mills (CCM)

Not affiliated with the COHERENT collaboration

ccm | s e (%) Los Alamos B
e Located at Los Alamos National Lab iy Ty e | O NATIONAL LABORATORY g
e LujanCenter ‘ SR
e 7ton activeinterior volume v
e Largest LAr detector by photo-cathode area &

e Analysisdependent 10 - 100 keV threshold '

CENNS-10 (COHERENT collaboration) To scale
e Located at Oak Ridge National Lab
e Spallation Neutron Source
e 24 kg active interior volume
e 20keV threshold
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National Laboratory

Sire .



Coherent CAPTAIN-Mills (CCM)

e Electronics have 2ns sampling time
e Sensitive between ~10keV and ~200MeV

o 80% of PMTs coated in
1,1,4,4-Tetraphenyl-1,3-butadiene (TPB) to
wavelength shift LAr scintillation light

e TPB foils cover detector walls

Coated PMT Uncoated PMT
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CCM light collection

e Liquid argonis a prolific UV scintillator, transparent to its

own scintillation light 4
e TPBshifts 128nm scintillation photons into the visible
spectrum (increasing light yield) - >
e Walls of detector are TPB coated UV Scintillation \ Broad Spectrum
e Mix of coated and uncoated PMTs aid particle Light Cherenkov Light
identification |
Coated PMT Uncoated PMT

e Canisolate broad-spectrum Cherenkov light on uncoated

PMTs
e Provides a handle for differentiating nuclear-recoil-like

and electron-like events

Direct wavelength

Early Cherenkov Light shifted scintillation Delayed wavelength
Q shifted scintillation at

\ lower yield
e Early

v g Cherenk
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Neutrino sources: 100 keV to 100 MeV

Decay

e Decay inflight neutrino beams
o O(1MeV - 10 GeV)
o BNB, NuMl, J-PARC
e Piondecayatrest
o  O(1-50MeV)NuE and NuMuBar
o Predominantly 29.9 MeV prompt NuMu
o SNS, Lujan, ...
e Kaondecay at rest
o  O(1-200MeV)NuE, NuMu
o  Predominantly 236 MeV NuMu
o J-PARC
e Reactor neutrinos
o 0O(0.1 MeV - 10 MeV)
e Intense radionuclide neutrino sources

144
o O(100keV - 1 MeV) Ba
etc.
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Neutrino sources: 100 keV to 100 MeV

Decay
Horn pipe Dump
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Neutrino sources: 100 keV to 100 MeV
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Production rate (’'Ge atoms/day) Production rate (’'Ge atoms/day)

Neutrino sources: 100 keV to 100 MeV

Production rates for the inner target

— predicted
— measured
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Neutrino sources: 100 keV to 100 MeV

Decay
Horn pipe Dump
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The Beam Dump Landscape...
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The Beam Dump Landscape...
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The Beam Dump Landscape...

Reduce both beam and cosmic backgrounds,

regain rate through larger detector
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Lujan is special
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The Beam Dump Landscape...

e Lujanisuniqueinits background
rejection capabilities

e piDAR provides a very clean flux of
neutrinos

e Theshort 290 ns proton pulse allows us
to remove neutrons through arrival time

e Future upgrades will improve
performance

SNMire

Background Rejection
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CCM at Lujan

Flight Path 5 ” “
]

HIPPO
Flight Path

B 11111111 111111

Top-down view of
the Lujan target
hall

CCMis 90° off axis from the beam
Prompt numu neutrinos at 30 MeV

Delayed nue and numubar

Target environment has an intense flux of:
charged pions, neutral pions, gamma-rays, muons,
neutrinos, and neutrons

ER-2 e Ripefor dark-sector production

SMARTS
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CCM shielding at Lujan

e  90° off-axis from the beam 3 ways we eliminate neutron backgrounds

e Nodecay in-flight backgrounds

e Signals produced isotropically e Shielding attenuates and slows neutrons

e Dominant background is neutrons from the e Anactive veto region tags incoming neutrons
target Precise timing allows us to reject these slowed

(]
A gamma ray detector helps us

i i R neutrons, and accept speed of light particles like
achieve this precise timing

neutrinos and axions

|
vs, ALPs, etc.
v g o 00000 ©
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Precise arrival timing with gamma rays

Gamma detector placed close to target

Pinhole in shielding allows single gamma-rays
through

Prompt, speed of light, gammas give us a
reference time for when speed of light particles

will arrive at CCM
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CCM timing and backgrounds

e Signals (neutrinos/ALPs/DM and others) arrive promptly

e Dominant background is neutrons from the target
o  Shielding attenuates and slows neutrons
o  Neutron background can be rejected almost entirely through
timing cuts
e Steady state backgrounds are directly measured with
pre-beam data
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CCM timing and backgrounds

e Signals (neutrinos/ALPs/DM and others) arrive promptly

e Dominant background is neutrons from the target
Shielding attenuates and slows neutrons

O

(@]

P =
SMir

Neutron background can be rejected almost entirely through

timing cuts
e Steady state backgrounds are directly measured with
pre-beam data
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Broad program of dark sector searches

@rl'l

CCM physics program

Nuclear

Search for Axion-Like-Particles and MeV-scale
QCD axion

Dark sector
production in
target

Or in shielding

recoil

[https://doi.org/10.1103/PhysRevD.107.095036]
Search for leptophobic MeV-scale dark matter
[https://doi.org/10.1103/PhysRevlett.129.0218
01]

Search for light-dark-matter
[https://doi.org/10.1103/PhysRevD.106.012001]
Testing Meson Portal Dark Sector Solutions to
the MiniBooNE Anomaly
[https://arxiv.org/abs/2309.02599]

Search for the X17 ATOMKI particle

Search for Heavy Neutral Leptons

Search for dark photons

OrinCCM [182
e Dark sector

decays

Critical Standard Model measurements

e Coherent Elastic Neutrino Nucleus Scattering
(CEVNS) cross section measurement at the
10 keV to 100 keV scale

e CCand NCcross section measurements on Argon
at the MeV to 10’s of MeV scale

21
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Results from CCM120 and
projections for CCM200

Qlire
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Dark Sector Coupling to Meson Decay (DSCM D)

A, | R |
Ll | A

Schematically we introduce

b
oty (>
e

e
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sl |

e Avrare 2-body neutral pion decay to a photon and a
bosonic long-lived particle (LLP),
the production of this LLP from the three-body
decay of the charged mesons,
and subsequent photoconversion of the LLP
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Dark Sector Explanations of the MiniBooNE LEE

541 m

50 m

S, /
)z 3-body decays

7 1 10 m
Ong— iV d i
8 GeV p A ed 8P | > (fducial)
Focusing Horns
Target (Be) Dump Detector (CHb2)
v-mode v-mode
Phys.Rev.Lett 129 (2022) 11, 111803 N 140 ]
. ° 400 1 - :I/i(xzxig:)l;\lgrg::oimnd
e 4.80 excess at MiniBooNE target mode runs . : ’ I
e No excess in dump mode run S -
e If excessis due to new long-lived particles (LLPs) or light ) 3T
dark matter (LDM), it may be correlated to the charged 100 1 I ™
meson decays £ s
8 200 7

e We can test this possibility in a complementary way at
CM o I 0 e
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https://doi.org/10.1103/PhysRevLett.129.111803

Dark Sector Coupling to Meson Decay (DSCMD)

Big picture: lots of
possible operators to
explain the
MiniBooNE excess

We can test these
systematically with
both charged and
neutral pion decays at
CCM

3;8 N ! r
e = =
Slire 25




DSCMD in CCM

arXiv:2309.02599

P d lanati f MB Low E E :
° roposed explanation o ow Energy Excess Arian Thompson's Tuesday Talk

e 3 body meson decay producing scalar (or

Vector IB2 (my = 5 MeV), n%-mediated scattering

pseudo-scalar) : PZA CCMI20 Exclusion

PIENU R(n* — V) —— MiniBooNE Fit (10, 20)
—— CCM200

------ CCM200 (Background-free)

MicroBooNE 1v0p Exclusion

e Visiblyinteract in the detector

e CCMcancutinto MB scalar model parameter
space with current background projections
e Measurement can break potential model

degeneracies with SBN

1075 1074 1073 1072

gr0

Sire 2


https://arxiv.org/abs/2309.02599
https://indico.nevis.columbia.edu/event/6/contributions/18/

Leptophobic dark matter

.-.-- Vector portal coupled (e \Y quarks
‘....l e Production through rare rn° decay in the target

e Detection through coherent scattering off Argon
nuclei — nuclear recoil
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Leptophobic dark matter

e Direct thermal relic detection is limited by Leptophobic scenario
abundance and mediator mass
e Canonly probe mediators masses above ~1 GeV e Scalar DM candidate X

e Vector portal communicating with the SM quarks
via gauged baryon number

CCMis exploring accelerator produced dark matter e Production happens through arare i decay in
the target
e Relativist DM production means we can probe e Detection is through a coherent interaction that
mediator masses in the less explored ~10 MeV results in a low-energy nuclear recoil
regime
’U,,d ANANANANAN Y
7.‘.0 _——— -
Ve — X

SNMire X g



Leptophobic dark matter search with CCM120

e Dark matter abundance expected from cosmology

—~
n
o

e CCMengineering run already probing new

> 107 e 7}e’ptophoblc Darkyw{
Scatterin
—_

MB Nucleon

parameter space in this region of interest
e CCM 3yrrunwill place strong constraints in the
region of interest for this model

/y
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7.‘.O -
X X
Ve — X +
n%induced DM flux is
widespread in angle \ _ VB
X N N
Beam Target Production Detection
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..............................................
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CCM (three-year run ends 2025)....--
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First Leptophobic Dark Matter Search from the Coherent—-CAPTAIN-Mills Liquid Argon Detector

@;IIIII O'Q PhysRevl ett.129.021801
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Axion-Like Particles (ALPs) and the QCD Axion
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Axion-Like Particles (ALPs) and the QCD Axion

e Axion-Like-Particles (ALPs) show up in many well-motivated BSM theories,

like dark matter explanations, dark mediators, and BSM neutrino physics

O

Generically interesting to search across the parameter space

e (QCD) Axions are a proposed solution to the Strong-CP problem in QCD

O O O O

SNMire

Why is the neutron dipole moment so small?d < 10%° e cm

Related to CP violating term in QCD: £ D 0GG

Axions provide a mechanism to dynamically conserve CP

Minimal QCD axions live in a small band in the mass-coupling parameter space

10-7 CROWS 1 poiy

OSQAR

Solar v

1077 CAST

= 10710 Ll Globular clusters

3 O 9 B T b .5 i I . . \] VA ] J © g
1050730707 1010740704040 0 P4 Pt AT A8 AT AT 48 4T S 4T

mg [eV]

Hook [1812.02669]

CCM is sensitive to
ALPs with masses up to
~100 MeV (not shown

in this plot)
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Phenomenology: ALP Detection in CCM

Production Channels
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https://arxiv.org/abs/2112.09979

CCM: Axion-Like Particles

High energy EM signals (1-10 MeV)
Sensitivity at 90% CL
Can probe “cosmological triangle” with terrestrial measurement

71 CCM200 Projections: 3 year run
¥ZA CCM120 Exclusion (This Work)
—— CCM120 Expected Sensitivity

1073
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107
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s 771 CCM200 Projections: 3 year run
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SN1987a —— CCM120 Expected Sensitivity SN1987a
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https://doi.org/10.1103/PhysRevD.107.095036

Beyond CCM

Qlire
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Coherent Cesium lodide (CCl)

CCI: A small-scale counterpart to CCM

e Compact size make the detector easy to shield
and easy to move

e 1tonsegmented Csl scintillation detector,
instrumented with PMTs

e Critical design characteristics
o  Fast Csl(pure) scintillation light time of ~30 nsec

o  High coherent cross section of Cs: 3.5 times larger one-ton CCl (pure)
than Ar
o  Lowintrinsic radioactive background from Csl
o Large light output of 3000 photons/MeV Assembled from spare Csl
e Provides sensitivity to CEVNS crystals available at LANL

o  100keV threshold
o Large event rate
o  Low background

Sire 35



CCl at Lujan

Flight Path 5 ” ”
_I]IIIIII]II' 11111181}

e Initially to be placed behind CCM to take
advantage of existing shielding
e Can be moved to perform measurements at

the Lujan target : different distances
hall e Provides us flexibility to hunt down different

/ : signals or constrain backgrounds for CCM

HIPPO
Flight Path

Top-down view of

one-ton CCl (pure)

L | )

N =
SHlire 36



Lujan Liquid Argon Measurement Apparatus (LLAMA)

e Reuse MicroBooNE cryostat and cryogenics
e 10mlongand 3mdiameter

e 100 ton fiducial volume

e Remove Time Projection Chamber (TPC)

e [nstrument it like CCM: 1.5k 8in PMTs

e Orientittowards the beam
e Detector can be constructed for under $30M

LLAMA CCM

SNMire 37



LLAMA

Key improvements over CCM

e 14x active mass gives us 14x more events in any
physics search
e Filtration of the Argon can lower the energy

threshold to 5 keV
o  Givesusaccessto CEVNS
o  Many BSM models have a coherent channel Speed of light
o  Allows us to test the BEST oscillation scenario particles
o Precision cross section measurement
Fast
neutrons

Sire 28



LLAMA

Key improvements over CCM

e 14x active mass gives us 14x more events in any
physics search

e Filtration of the Argon can lower the energy
threshold to 5 keV

O

O

O

O

Gives us access to CEVNS

Many BSM models have a coherent channel
Allows us to test the BEST oscillation scenario
Precision cross section measurement

e Sterile neutrino oscillations can be probed over
the length of the detector

O

CEvVNS gives a very large sample of neutrino
interactions

Timing can be used to distinguish between flavors
Can be supplemented with CC measurements
Has sensitivity to the BEST allowed regions
L/E=1

ST

50
Energy (MeV)

100
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LLAMA

Key improvements over CCM

e Shielding the detector is much easier. Most
shielding can be concentrated at the front
e Fast neutrons are attenuated by 1/10 across 2m

of LAr
o  Neutron background very low at the back of the —
detector Speed of light
o Neutron background has a distinct exponential particles
fall-off that is not present for signal events
Fast
neutrons

Neutrons: exponential falloff

Sire 40



Summary

e  Accesstoanintense source of pions allows CCM to probe
possible explanations to the MB excess

e Lower energy + off-axis PiDAR source + fast timing
= very low backgrounds

Standard Model measurements

e  Coherent Elastic Neutrino Nucleus Scattering (CEVNS)
cross section measurement at the
10 keV to 100 keV scale

e Neutral current and charged current neutrino cross
section measurements at the MeV to 10’s of MeV scale

CCM: In the process of analyzing our 2022
and 2023 data samples

Plans beyond CCM at Lujan:

ST

‘one-ton CCl (pure)

Nuclear

|, st recoil

Dark sector
production in

target

Or in shielding

OrinCCM ;\/’ >
m——— Dark secto

decays

Broad program of dark sector searches

Search for Axion-Like-Particles and MeV-scale QCD axion

Search for leptophobic

MeV-scale dark matter

Search for light-dark-matter

Testing meson portal explanations for the MiniBooNE

anomaly

Search for the X17 ATOMKI particle
Search for Heavy Neutral Leptons
Search for dark photons
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Bonus Slides
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CCM Cherenkov light G- (&

Cherenkov light is direct, directional, broad spectrum
Scintillation light is delayed, isotropic, and in the UV
Average photo-electrons over 1000 simulated events
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Cherenkov light with Michel electrons

me ¥ 3251 to 3259

e Cosmicray muon is tagged by external plastic 1000 Preliminary
scintillator detector 800
e Muon enters the detector causing bright iﬁ
scintillation, and coming to a stop (1/10 muons) 200
il /
e Stopped muon subsequently decays, creating a o T 2 2
Michel electron with energy up to 53 MeV ; s | ¢
e Michel electron produces Cherenkov and
scintillation light -
e Uncoated tubes are efficient at picking up the

early Cherenkov light

ST /
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Cherenkov light with Michel electrons

e  First demonstration of event-by-event >
identification of Cherenkov light in liquid Argon

e  Working now to incorporate Michel electrons
into the calibration

e  Will provide an important reference point for
developing Cherenkov light based particle
discrimination

RN
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Scintillation light in liquid argon

e Two pathways to produce scintillation light in liquid Argon

Free Argon Free Argon
Argon 8
Argon Excimer Ar
Excited State .y, "
Free A : 2
ree Argon \:_xc'\taf\on Ar
A ; Free Argon
o""?ar Argon lon
01 AT
N Ar' ()

2
lonized Molecule

G Ar
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Scintillation light in liquid argon

e First pathway to produce scintillation light

Free Argon

Argon Free Argon

Argon Excimer

Excited Stateq.y,

Free Argon

Free Argon

@l'lil'@ 47



Scintillation light in liquid argon

e Second pathway to produce scintillation light

Argon Free Argon

Excimer

Free Argon

Free Argon
Argon lon

lonized Molecule

@l'lil- ) Free Argon 48



Scintillation light in liquid argon

e Allliquid argon scintillation light comes from an

Argon excimer Free Argon
Argon

e The Argon excimer is an Ar," dimer core with a Excimer

bound single bound electron

o  This Rydberg state has a nuclear separation of ~2A

o  Decay of the excimer emits 128nm UV light
Argon

e Two excimer states of nearly identical energy Excimer Free Argon
exist: the singlet state, and the triplet state

e Thetwo states have decay times of 6 ns and
1500 ns respectively

M 49

e Free atomsin liquid Argon are approximately 4 A
apart, making liquid Argon transparent to its own
scintillation light
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DSCMD in CCi

10(.! - o -
e CCl provides amodest improvement over CCM in E o
e PIENU R(z* — V) -, s
sensitivity o i S
. . . Fe 1
e Lowradioactive backgrounds and higher cross ] -
. ™ 1
section compensates for lower mass 1 = !
IU‘Z E \\»\
3 S !
S ' I
. | E
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] §\:
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: XS
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Dark photons and other “3 vertex” models
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“3 vertex” models

A dark photon model.

e Tworelated trends ininterpreting neutrino anomalies: Ex. PhysRevD.107.035027 ¥
o  Looking at more complex models: in their theory, and
number of parameters v
o  Looking at more complex models: in their spatial
geometry
e Many of these have “3 vertices” that we care about
o  Neutrino production
o  Upscattering/ conversion
Decay Neutrir_mo Up-scattering/ By
e A consequence of this is that longer detector production conversion
geometries become advantageous for detection across
awide range of the decay model parameter space
e LLAMA benefits greatly from this
1%

An HNL model.
Ex. PhysRevD.107.055009

Image credit
f ¥ [arXiv:2308.02543]

. [ § | ; :
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LLAMA

Examining a dark photon model with

[ ]
LLAMA
102
e Just one example of a model that has the
« » --- LAr 100 ton - bkg from CCM
3 vertex” structure \ [—-- LAr 100 ton - bkg free ]
. 10~ e
e LLAMA provides excellent coverage of .
Extra Preliminary
new parameter space
H -6 ‘i‘%\*:.
e  Weexpect this to be true for many models % 10 ';
with similar structure
1078
" ~.______‘.’.'.".'.'."_'_'__.'_"_"_‘.’.' __________ i RS — {3 ———
Thes 102 107! 10°
Mass of Dark Photon (GeV)
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Coherent Cesium lodide (CCl)

CCI: A small-scale counterpart to CCM

e Compact size make the detector easy to shield
and easy to move

e 1tonsegmented Csl scintillation detector,
instrumented with PMTs

e Critical design characteristics
o  Fast Csl(pure) scintillation light time of ~30 nsec

o  High coherent cross section of Cs: 3.5 times larger one-ton CCl (pure)
than Ar
o  Lowintrinsic radioactive background from Csl
o Large light output of 3000 photons/MeV Assembled from spare Csl
e Provides sensitivity to CEVNS crystals available at LANL

o  100keV threshold
o Large event rate
o  Low background
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Coherent Cesium lodide (CCl)

CCI: A small-scale counterpart to CCM

e Compact size make the detector easy to shield
and easy to move

e 1tonsegmented Csl scintillation detector,
instrumented with PMTs

e Critical design characteristics
o  Fast Csl(pure) scintillation light time of ~30 nsec
o  High coherent cross section of Cs: 3.5 times larger
than Ar
o  Lowintrinsic radioactive background from Csl
o  Large light output of 3000 photons/MeV
e Provides sensitivity to CEVNS
o 100 keV threshold
o Large event rate
o  Low background
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CCl at Lujan

Flight Path 5 “ “
]

e Initially to be placed behind CCM to take
advantage of existing shielding

e Can be moved to perform measurements at

E different distances

HIPPO
Flight Path 4

Top-down view of
the Lujan target
hall

B ?/(/ 23
SMARTS <

Flight Path 2

\
A\

60cm

Fignipam1a || Flgntpam 13 one-ton CCl (pure)

L | )
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CCl at Lujan

Flight Path 5 ” ”
_I]IIIIII]II' 11111181}

e Initially to be placed behind CCM to take
advantage of existing shielding
e Can be moved to perform measurements at

the Lujan target : different distances
hall e Provides us flexibility to hunt down different

/ : signals or constrain backgrounds for CCM

HIPPO
Flight Path

Top-down view of

one-ton CCl (pure)

L | )

N =
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Lujan Liquid Argon Measurement Apparatus (LLAMA)

e Reuse MicroBooNE cryostat and cryogenics
e 10mlongand 3mdiameter

e 100 ton fiducial volume

e Remove Time Projection Chamber (TPC)

e [nstrument it like CCM: 1.5k 8in PMTs

e Orientittowards the beam
e Detector can be constructed for under $30M

LLAMA CCM

SNMire 58



LLAMA

Key improvements over CCM

e 14x active mass gives us 14x more events in any
physics search
e Filtration of the Argon can lower the energy

threshold to 5 keV
o  Givesusaccessto CEVNS
o  Many BSM models have a coherent channel Speed of light
o  Allows us to test the BEST oscillation scenario particles
o Precision cross section measurement
Fast
neutrons
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LLAMA

Key improvements over CCM

e 14x active mass gives us 14x more events in any
physics search

e Filtration of the Argon can lower the energy
threshold to 5 keV

O

O

O

O

Gives us access to CEVNS

Many BSM models have a coherent channel
Allows us to test the BEST oscillation scenario
Precision cross section measurement

e Sterile neutrino oscillations can be probed over
the length of the detector

O

CEvVNS gives a very large sample of neutrino
interactions

Timing can be used to distinguish between flavors
Can be supplemented with CC measurements
Has sensitivity to the BEST allowed regions
L/E=1

ST
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LLAMA

Key improvements over CCM

e Shielding the detector is much easier. Most
shielding can be concentrated at the front
e Fast neutrons are attenuated by 1/10 across 2m

of LAr
o  Neutron background very low at the back of the —
detector Speed of light
o Neutron background has a distinct exponential particles
fall-off that is not present for signal events
Fast
neutrons

Neutrons: exponential falloff

Sire 61



Heavy neutral leptons

Considering HNL production from neutrino upscattering in
shielding and detector materials only

yﬂ N Vp,t
N
Potential to increase shielding if detector moved to 40m 0
Projected limit: 100 bkg/year A A o

CCM HNL Sensitivity: 3 Years of Data Collection

Optimistic limit: 10 bkg/year 107 o,
Other production channels to be considered: PRELIMINARY
o  Neutrino-photon resonant HNL production
o Dalitz-like decay
~
=
g
4 L ~1070 S
T 2 &
= 5
N n & < — =
9 2 —
< CHARM-II Mg,
.
¥ N .
1077+ 5’5
Can also search for nuclear recoil from upscatteringin 1%
detector ¥ sNws7A 771 CCM Projected Limit 95% CL
1 CCM Optimistic Limit 95% CL

2 % 101 3x 100 4x 10!

N - o
@ I I I il ¥®  Recent constraints on this model arXiv.2206.07100 my (MeV)

6 x 10!

106 2


https://doi.org/10.48550/arXiv.2206.07100

