

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

ICARUS Cross-Section Measurements

Minerba Betancourt (Fermilab) on behalf of the ICARUS collaboration April 04 2024 Short-Baseline Experiment/Theory Workshop

Short Baseline Science Program

- Search for Sterile Neutrinos
 - V_{μ} disappearance, V_{e} appearance and V_{e} disappearance
- Neutrino cross section measurements
 - Millions of neutrino interactions for V_{μ} and hight statistics for $V_{e,}$ see Henry's talk for SBND
- Search for Beyond Standard Model physics, detector locations and technology will enable many searches , see Jose and Jamie's talks
 - Dark neutrinos, light dark matter, axion-like particles, heavy neutral leptons, higgs portal scalar, transition magnetic moment and millicharged particles

ICARUS at **FNAL**

• The ICARUS detector is located on-axis from the Booster beam and 6° off-axis from the NuMI beam

Fermilab

 $\nu_{\rm u}/\bar{\nu}_{\rm \mu}$

 $\nu_{\rm e}/\bar{\nu}_{\rm e}$

5

ICARUS (Imaging Cosmic And Rare Underground Signals)

- Tracking device: precise 3D event topology with ~mm³ resolution for ionizing particle
- Charged particles from neutrino interactions ionize the LAr, production ionization electrons drifting in 1 ms toward readout sense wires
- 2 TPCs per module with central cathode, 1.5 m drift, $E_D=0.5$ kV/cm, $\Delta t \sim 1$ ms
- 3 readout wire planes (2 induction+collection). per TPC, ~54000 wires at 0, 60 degrees, 3 mm pitch: a continuous read-out
- 360 (8" PMTs): Scintillation light detected to provide ns event time and trigger

ICARUS at **FNAL**

 Several technology improvements were introduced, aiming to further improve the achieved performance ICARUS previous runs: new cold vessels, improvement of the cathode planarity, higher system

Top - horizontal

PM

500

1000

z [cm]

ICARUS is located on the to reduce and tag the ab

Wire planes (anod

PM

TPC

1 T600 module

Cathode

© 2016-2018 CERN

rburden has been installed

side CRT

Top CRT

Minerba Betancourt

Field cage

-1000

600

3m concrete overburden

Fermilab

Status

- ICARUS began commissioning in 2020 with cosmic data
- First ICARUS physics runs collected last June 2022 and December 2022 (Run I) and 2023 (Run 2)
- Collected two successful physics runs from NuMI (3e20POT) and Booster neutrino beams (2.4e20POT)

• Commissioning and physics data have been used to perform the calibration, tune the reconstruction and start the first analyses with neutrino data

Calibration

- The full calibration has been developed, including: measurement of the drift velocity, equalization of electronic changes and detector response across the wire plane
- The measured ionization density dQ/dx is studied in bins of residual range, track angle and drift time for cosmic muon stopping/decaying in the LAr

P. Abrateenko et al, Eur. Phys. Journal C 83, 467 (2023)

TPC Commissioning

- The signal-to-noise ratio was extracted from a sample of anode-to-cathode crossing cosmic muons
- Results of ionization drift velocity measurement using cosmic muon data

P. Abrateenko et al, Eur. Phys. Journal C 83, 467 (2023)

TPC Track Reconstruction

• Comparison of cosmic events reconstructed in data and simulation in TPC

See Alice Campani's LArTPC track reconstruction talk

NUMT VOCC

scanned z position Visual study of ~600 neutrino candidates from BNB ¹²⁰ Δ (scan-reco) 100 **Collection plane** 80 Drift direction Slices 60 Primary vertex 40 ٤ **Beam direction** 20 Cathode 1.8 m Wires 0 10 -8 -2 4 6 8 10 -6 _4 $\Delta_{\text{vertex Z}}$ (cm) Minerba Betancourt 9

Reconstruction from PMT and CRT Systems

CRT hit time relative to the neutrino gate start time for the NuMI beam

Program

NuMI off Axis at ICARUS

 The ICARUS detector is located 6° off-axis from the NuMI beam Data events from NuMI off axis

Electron neutrino candidate with electromagnetic shower Edep=600 MeV

Muon neutrino candidate with muon candidate p~1.3 GeV/c and π 0 candidate with photons of 200 and 240 MeV

Neutrino Interactions from NuMI off axis at ICARUS

• Excellent statistics to make cross section measurements for quasi-elastic and pion production scattering, for both electron and muon neutrinos

Muon Neutrino

Electron Neutrino

CC Events/year: v_{μ} 366,000 and v_{e} 17,000

Relevance for DUNE

- NuMI at ICARUS offers excellent coverage for V_{μ}

Muon Neutrinos from NuMI

Relevance for DUNE

 Electron neutrino spectrum from NuMI at ICARUS covers the first oscillation peak and the tail covers the majority of the relevant phase space for the DUNE experiment

• V_e flux is excellently distributed to probe regions of kinematic phase space in which we expect the largest V_e/V_μ differences (which is the dominant systematic for DUNE-CP violation measurements)

Muon Neutrino from NuMI beam at ICARUS

- Neutrino cross section measurement with NuMI
- Developing and optimizing muon neutrino event selection

Distributions with the **beam OFF**, we are scaling as slide 4

Muon Neutrino from NuMI beam at ICARUS

- Starting to study events with one muon and N Protons
- One muon and N proton event selection
 - Mantax in fiducial values

NuMI Neutrino Data and NuMI beam off Data

Selection Criteria

Distributions with the **beam OFF**, we are scaling as slid**Data from NuMI**

eno

CC 0π **Event Selection**

- First analysis targets $I\mu$ +Nproton+ 0π
 - $I\mu$ +Nproton+0 π enhanced in quasi-elastic and 2p2h interactions
- Building up cross-section analysis to conduct model investigations
- Angle between the muon candidate and leading proton candidate populates the phase space somewhat broadly and would be expected to encode information about FSI for all events
- Signal definition: One muon with momentum > 226 MeV/c, any proton with momentum between 400 MeV/c and I GeV/c, no charged or neutral pions
- Events with contained and exiting muons

CC 0 π Event Selection for fully contained Events

- Transverse kinematic imbalances observables δP_T and $\delta \alpha_T$ for fully contained events
- Signal definition: One muon with momentum > 226 MeV/c, any proton with momentum between 400 MeV/c and I GeV/c, no charged or neutral pions
- Events with contained muons and protons

📽 🕻 🕻 🕻 🕻

OOPS: Out of phase space; signal but fails μ /p momentum thresholds

Systematic Uncertainties

- Excellent progress with the systematic uncertainties evaluation: Detector, flux, cross-section, FSI and GEANT4 systematics
- Developing sideband and using external data sets from MINERvA to constrain the main background CC pion

NuMI Cross Section

- Developing the cross section extraction with small set of the data
- A selection targeting $I\mu$ +Nproton + 0π anything with some differences in cuts with data samples to highlight cosmic rejection and selected beam events
- Data versus MC studies ongoing: shown here some relaxed cuts area normalized, fairly reasonable comparisons
- Measuring backgrounds/sidebands for analysis (e.g. charged pions)
- Developing and evaluating systematic uncertainties, using GENIE v3.04.00 with the latest development shared from DUNE

Fermilab

Summary

- Rich physics program of neutrino-argon scattering measurements and BSM physics using NuMI
 - Conducting neutrino cross-section and interaction measurements using neutrinos from NuMI beam in a similar kinematic regime as DUNE
 - Opportunity to test and constrains models for use in DUNE
- ICARUS at Fermilab underwent a period of commissioning and first operations as captured in recent paper: P.Abrateenko et al, Eur. Phys. Journal C 83, 467 (2023)
- Actively using forward analyses with the data collected 3E20 POT from NuMI
 - Ongoing work to conduct $I\mu$ +Nproton+ 0π cross section analysis
- ICARUS results will be quantitatively useful when DUNE is building and tuning its interaction model for real data analysis
- We would love to use the latest models development discussed in this workshop and work together to benchmark the models and uncertainties with new data

