

Artwork by Sandbox Studio, Chicago with Ana Kova

"2nd Short-Baseline Experiment-Theory Workshop" April 2-5, 2024

Zahra Tabrizi Neutrino Theory Network fellow

Northwestern University

reactor Presented Presente

Precision Measurements at Oscillation Experiments

Tons of data;

- Identify neutrino flavor;
- More sensitive to some HE operators;

Goal:

A systematic analysis of NP using neutrino experiments; Connecting the results to other precision experiments;

Oscillation Experiments

Indirect Search of New Physics

Affects Neutrino Interactions

Observable: rate of detected events

~ (flux)×(det. cross section) × (oscillation)

Zahra Tabrizi, NTN fellow, Northwestern U.

• Coherent CC and NC forward scattering of neutrinos

• New 4-fermion interactions

- Observable effects at neutrino production/propagation/detection?
- Using "EFT" formalism to "systematically" explore NP beyond the neutrino masses and mixing

EFT ladder

SMEFT: minimal EFT above the weak scale

Zahra Tabrizi, NTN fellow, Northwestern U.

EFT ladder WEFT: Effective Lagrangian defined at a low scale $\mu\,{\sim}\,2\,{\rm GeV}$

At the scale m_Z WEFT parameters ε_X map to dim-6 operators in SMEFT

$$\begin{split} [\epsilon_L]_{\alpha\beta} &\approx \frac{v^2}{\Lambda^2 V_{ud}} \left(V_{ud} [c_{Hl}^{(3)}]_{\alpha\beta} + V_{jd} [c_{Hq}^{(3)}]_{1j} \delta_{\alpha\beta} - V_{jd} [c_{lq}^{(3)}]_{\alpha\beta1j} \right. \\ [\epsilon_R]_{\alpha\beta} &\approx \frac{v^2}{2\Lambda^2 V_{ud}} [c_{Hud}]_{11} \delta_{\alpha\beta} \\ [\epsilon_S]_{\alpha\beta} &\approx -\frac{v^2}{2\Lambda^2 V_{ud}} \left(V_{jd} [c_{lequ}^{(1)}]_{\beta\alphaj1}^* + [c_{ledq}]_{\beta\alpha11}^* \right) \\ [\epsilon_P]_{\alpha\beta} &\approx -\frac{v^2}{2\Lambda^2 V_{ud}} \left(V_{jd} [c_{lequ}^{(1)}]_{\beta\alphaj1}^* - [c_{ledq}]_{\beta\alpha11}^* \right) \\ [\hat{\epsilon}_T]_{\alpha\beta} &\approx -\frac{2v^2}{\Lambda^2 V_{ud}} V_{jd} [c_{lequ}^{(3)}]_{\beta\alphaj1}^* \end{split}$$

Falkowski, González-Alonso, ZT, JHEP (2019)

- All ε_X arise at O(Λ^{-2}) in the SMEFT, thus they are equally important.
- No off-diagonal right handed interactions in SMEFT.

I proposed a systematic approach to neutrino oscillations in the SMEFT framework!

Falkowski, González-Alonso, ZT, JHEP (2020)

I proposed a systematic approach to neutrino oscillations in the SMEFT framework!

Falkowski, González-Alonso, ZT, JHEP (2020)

Observable: rate of detected events

~(flux)×(det. cross section)×(oscillation)

$$R_{\alpha\beta}^{\rm SM} = \Phi_{\alpha}^{\rm SM} \sigma_{\beta}^{\rm SM} \sum_{k,l} e^{-i\frac{L\Delta m_{kl}^2}{2E_{\nu}}} U_{\alpha k}^* U_{\alpha l} U_{\beta k} U_{\beta l}^*$$

I proposed a systematic approach to neutrino oscillations in the SMEFT framework!

Observable: rate of detected events

 \sim (flux) \times (det. cross section) \times (oscillation)

Falkowski, González-Alonso, <u>ZT</u>, JHEP (2020)

depend on the kinematic and spin variables

$$\mathcal{M}^{P}_{\alpha k} = U^{*}_{\alpha k} A^{P}_{L} + \sum_{X} [\epsilon_{X} U]^{*}_{\alpha k} A^{P}_{X}$$
$$\mathcal{M}^{D}_{\beta k} = U_{\beta k} A^{D}_{L} + \sum_{X} [\epsilon_{X} U]_{\beta k} A^{D}_{X}$$

CC EFT

$$\sigma^{Total} = \sigma^{SM} + \varepsilon_X \sigma^{Int} + \varepsilon_X^2 \sigma^{NP} \sim \sigma^{SM} (1 + \varepsilon_X d_{XL} + \varepsilon_X^2 d_{XX})$$

$$\phi^{Total} = \phi^{SM} + \varepsilon_X \phi^{Int} + \varepsilon_X^2 \phi^{NP} \sim \phi^{SM} (1 + \varepsilon_X p_{XL} + \varepsilon_X^2 p_{XX})$$

NC EFT

• Observed rate at the experiment: $R_{Obs} = 10^4 v_{\mu}$ $\sqrt{R_{obs}} = 10^2 \nu_{\alpha} \equiv \Delta R$ Uncertainty: $R_{Th} = R_{SM}(1 + C \epsilon^2) = R_{SM} + \Delta R$ From theory: $c = 10^{3}$ $\epsilon < \frac{10^{2}}{10^{3} \times 10^{4}} \sim 3 \times 10^{-3}$ $C \epsilon^2 = \frac{\Delta R}{R_{SM}}$ Limit on ϵ : $\frac{\sqrt{246 \ GeV}}{\sqrt{\epsilon}} = 4.5 \ \text{TeV}$ **New Physics Limit:** 0 $C \propto \frac{\sigma_{NP}}{\sigma_{SM}} \text{ or } \frac{\phi_{NP}}{\phi_{SM}}$

0

0

0

Long Baseline Accelerator Experimentsx

Kopp, Rocco, <u>ZT</u>, arXiv: 2401.07902

SM-Interactions:

Vector:
$$\langle p(p_p)|\bar{q}_u\gamma_\mu q_d|n(p_n)\rangle = \bar{u}_p(p_p) \left[G_V(Q^2)\gamma_\mu + i\frac{\tilde{G}_{T(V)}(Q^2)}{2M_N}\sigma_{\mu\nu}q^\nu - \frac{\tilde{G}_S(Q^2)}{2M_N}q_\mu\right]u_n(p_n)$$

Axial:
$$\langle p(p_p) | \bar{q}_u \gamma_\mu \gamma_5 q_d | n(p_n) \rangle = \bar{u}_p(p_p) \bigg[G_A(Q^2) \gamma_\mu \gamma_5 + i \frac{\tilde{G}_{T(A)}(Q^2)}{2M_N} \sigma_{\mu\nu} q^\nu \gamma_5 - \frac{\tilde{G}_P(Q^2)}{2M_N} q_\mu \gamma_5 \bigg] u_n(p_n) \bigg]$$

SM-Interactions:

Kopp, Rocco, <u>ZT</u>, arXiv: 2401.07902

Vector:
$$\langle p(p_p)|\bar{q}_u\gamma_\mu q_d|n(p_n)\rangle = \bar{u}_p(p_p) \bigg[G_V(Q^2)\gamma_\mu + i \frac{\tilde{G}_{T(V)}(Q^2)}{2M_N} \sigma_{\mu\nu} q^\nu - \frac{\tilde{G}_S(Q^2)}{2M_N} q_\mu \bigg] u_n(p_n)$$

Axial:
$$\langle p(p_p)|\bar{q}_u\gamma_\mu\gamma_5 q_d|n(p_n)\rangle = \bar{u}_p(p_p) \left[G_A(Q^2)\gamma_\mu\gamma_5 + i\frac{\tilde{G}_T(A,Q^2)}{2M_N}\sigma_{\mu\nu}q^{\nu}\gamma_5 - \frac{\tilde{G}_P(Q^2)}{2M_N}q_\mu\gamma_5\right]u_n(p_n)$$

/

SM-Interactions:

SM-Interactions:

Kopp, Rocco, <u>ZT</u>, arXiv: 2401.07902

Vector:
$$\langle p(p_p) | \bar{q}_u \gamma_\mu q_d | n(p_n) \rangle = \bar{u}_p(p_p) \left[G_V(Q^2) \gamma_\mu + i \frac{\tilde{G}_{T(V)}(Q^2)}{2M_N} \sigma_{\mu\nu} q^\nu - \frac{\tilde{G}_S(Q^2)}{2M_N} q_\mu \right] u_n(p_n)$$

Axial:
$$\langle p(p_p)|\bar{q}_u\gamma_\mu\gamma_5 q_d|n(p_n)\rangle = \bar{u}_p(p_p) \left[G_A(Q^2)\gamma_\mu\gamma_5 + i\frac{\tilde{G}_{T(A)}(Q^2)}{2M_N}\sigma_{\mu\nu}q^\nu\gamma_5 - \frac{\tilde{G}_P(Q^2)}{2M_N}q_\mu\gamma_5\right]u_n(p_n)$$

Zahra Tabrizi, NTN fellow, Northwestern U.

NEW-Interactions:

• Scalar: conservation of the vector current (CVC):

$$G_S(Q^2) = -\frac{\delta M_N^{QCD}}{\delta m_q} G_V(Q^2) + \frac{Q^2/2M_N}{\delta m_q} \tilde{G}_S(Q^2)$$

• Pseudo-Scalar: partial conservation of the axial current (PCAC):

$$G_P(Q^2) = \frac{M_N}{m_q} G_A(Q^2) + \frac{Q^2/2M_N}{2m_q} \tilde{G}_P(Q^2) \sim 350$$

D2: neutrino-deuterium data (shaded band)RQCD Collaboration (hatched band)

Kopp, Rocco, <u>ZT</u>, arXiv: 2401.07902

Zahra Tabrizi, NTN fellow, Northwestern u.

NEW-Interactions:

• Scalar: conservation of the vector current (CVC):

$$G_S(Q^2) = -\frac{\delta M_N^{QCD}}{\delta m_q} G_V(Q^2) + \frac{Q^2/2M_N}{\delta m_q} \tilde{G}_S(Q^2)$$

• Pseudo-Scalar: partial conservation of the axial current (PCAC):

$$G_P(Q^2) = \frac{M_N}{m_q} G_A(Q^2) + \frac{Q^2/2M_N}{2m_q} \tilde{G}_P(Q^2) \sim 350$$

- Tensor: LQCD and theoretical considerations
 - We cannot neglect \widetilde{G}_S anymore!
 - Large enhancements for several interactions;

Kopp, Rocco, <u>ZT</u>, arXiv: 2401.07902

Zahra Tabrizi, NTN fellow, Northwestern u.

Kopp, Rocco, **ZT**, arXiv: 2401.07902

Kopp, Rocco, <u>ZT</u>, arXiv: 2401.07902

We have the tools to do a global EFT analysis with all neutrino ex Zahra Tabrizi, NTN fellow, Northwestern U. 27

4/2/2024

Ο

- CCQE Neutrino-Nucleus Scattering;
- All non-standard interactions;
- For all neutrino Flavors;

- Including Nuclear effects;
- Quantifying various Uncertainties;

Kopp, Rocco, **ZT**, arXiv: 2401.07902

• We have the tools to do a global EFT analysis with all neutrino experiments;

Extracting 10 TeV physics from GeV neutrino experiments!

 Pion decay
 Production

 Falkowski, González-Alonso, Kopp, Soreq, ZT, JHEP (2021)

 Due to the pseudoscalar nature of the pion, it is sensitive only to

axial $(\epsilon_L - \epsilon_R)$ and pseudo-scalar (ϵ_P) interactions.

$$p_{LL} = -p_{RL} = 1, \quad p_{PL} = -p_{PR} = -\frac{m_{\pi}^2}{m_{\mu}(m_u + m_d)},$$

$$p_{RR} = 1, \quad p_{PP} = \frac{m_{\pi}^4}{m_{\mu}^2(m_u + m_d)^2}.$$

$$\sim -27$$

$$\pi^{-} \left\{ \begin{array}{c} \mathsf{d} \\ \overline{\mathsf{u}} \end{array} \right\} \xrightarrow{W^{-}} \psi^{\mu}$$

$$\pi^{-} (\mathsf{d}\overline{\mathsf{u}}) \rightarrow \mu^{-} + \overline{\mathsf{v}}_{\mu}$$

11 0

• Larger $p_{XY} \Rightarrow$ smaller ϵ !

 $\boldsymbol{\phi}^{Total} \sim \boldsymbol{\phi}^{SM}(1 + \boldsymbol{\varepsilon}_X \ \boldsymbol{p}_{XL} + \boldsymbol{\varepsilon}_X^2 \ \boldsymbol{p}_{XX})$

$$\langle 0 | d\gamma^{\mu} \gamma_5 u | \pi^+(p_{\pi}) \rangle = i p_{\pi}^{\mu} f_{\pi}$$
$$\langle 0 | \bar{d}\gamma_5 u | \pi^+(p_{\pi}) \rangle = -i \frac{m_{\pi}^2}{m_u + m_d} f_{\pi}$$

..

1 1 2

1 - 1 - 11

Huge overall flux normalization for pion decay!

4/2/2024

Zahra Tabrizi, NTN fellow, Northwestern U.

Production kaon decay

Falkowski, González-Alonso, Kopp, Soreq, ZT, JHEP (2021)

4/2/2024

Zahra Tabrizi, NTN fellow, Northw

Detection

Falkowski, González-Alonso, Kopp, Soreq, ZT, JHEP (2021)

DIS

Specific New Physics Models

ε_L: measures deviations of the W boson to quarks and leptons, compared to the SM prediction

 ϵ_R : left-right symmetric SU(3)_CxSU(2)_LxSU(2)_RxU(1)_X models introduce new charged vector bosons W' coupling to right-handed quarks

 $\epsilon_{s,P,T}$: In leptoquark models, new scalar particles couple to both quarks and leptons

Indirect Searches: Future Directions

- EFT global fit in neutrino oscillation experiments;
- Extraction of oscillation parameters in presence of general new physics;
- Preparing a public software package and implementing the EFT results: e.g. GLoBES-EFT;
- Comparison between the sensitivity of oscillation and other low/high energy experiments;

i'm now going to open the FLOOR to questions.

Zahra Tabrizi, NTN fellow, Northwestern U. CARTOONCOLLECTIONS.CO

Back up Slides

Neutrinos are not pure flavor states:

Neutrinos are not pure flavor states:

$$|\nu_{\alpha}^{s}\rangle = \frac{(1+\epsilon^{s})_{\alpha\gamma}}{N_{\alpha}^{s}}|\nu_{\gamma}\rangle , \quad \langle\nu_{\beta}^{d}| = \langle\nu_{\gamma}|\frac{(1+\epsilon^{d})_{\gamma\beta}}{N_{\beta}^{d}}$$

Observable: rate of detected events

~(flux)×(det. cross section)×(oscillation)

$$R^{\text{QM}}_{\alpha\beta} = \Phi^{\text{SM}}_{\alpha} \sigma^{\text{SM}}_{\beta} \sum_{k,l} e^{-i\frac{L\Delta m^2_{kl}}{2E_{\nu}}} [x_s]_{\alpha k} [x_s]^*_{\alpha l} [x_d]_{\beta k} [x_d]^*_{\beta l}$$

$$x_s \equiv (1 + \epsilon^s) U^* \& x_d \equiv (1 + \epsilon^d)^T U$$

Falkowski, González-Alonso, ZT, JHEP (2019)

- Can one "validate" QM-NSI approach from the QFT results?
- If yes, relation between NSI parameters and Lagrangian (EFT) parameters?
- Does the matching hold at all orders in perturbation?

- Can one "validate" QM-NSI approach from the QFT results? Yes...
- If yes, relation between NSI parameters and Lagrangian (EFT) parameters?
- Does the matching hold at all orders in perturbation? No...

Observable is the same, we can match the two (only at the linear level)

$$\epsilon^s_{\alpha\beta} = \sum_X p_{XL}[\epsilon_X]^*_{\alpha\beta}, \quad \epsilon^d_{\beta\alpha} = \sum_X d_{XL}[\epsilon_X]_{\alpha\beta}$$

Falkowski, González-Alonso, ZT, JHEP (2019)

Comparing QM and QFT

Only at the linear order:

Falkowski, González-Alonso, ZT, JHEP (2019)

Neutrino Process	NSI Matching with EFT
ν_e produced in beta decay	$\epsilon_{e\beta}^{s} = [\epsilon_{L}]_{e\beta}^{*} - [\epsilon_{R}]_{e\beta}^{*} - \frac{g_{T}}{g_{A}} \frac{m_{e}}{f_{T}(E_{\nu})} [\epsilon_{T}]_{e\beta}^{*}$
ν_e detected in inverse beta decay	$\epsilon^{d}_{\beta e} = [\epsilon_{L}]_{e\beta} + \frac{1 - 3g_{A}^{2}}{1 + 3g_{A}^{2}} [\epsilon_{R}]_{e\beta} - \frac{m_{e}}{E_{\nu} - \Delta} \left(\frac{g_{S}}{1 + 3g_{A}^{2}} [\epsilon_{S}]_{e\beta} - \frac{3g_{A}g_{T}}{1 + 3g_{A}^{2}} [\epsilon_{T}]_{e\beta} \right)$
ν_{μ} produced in pion decay	$\epsilon^s_{\mu\beta} = [\epsilon_L]^*_{\mu\beta} - [\epsilon_R]^*_{\mu\beta} - \frac{m_\pi^2}{m_\mu(m_u + m_d)} [\epsilon_P]^*_{\mu\beta}$

- Different NP interactions appear at the source or detection simultaneously
- Some of the p_{XL}/d_{XL} coefficients depend on the neutrino energy
- There are chiral enhancements in some cases

These correlations, energy dependence etc. cannot be seen in the traditional QM approach.

Comparing QM and QFT

Beyond the linear order in new physics parameters, the NSI formula matches the (correct) one derived in the EFT only if the consistency condition is satisfied

$$p_{XL}p_{YL}^* = p_{XY}, \quad d_{XL}d_{YL}^* = d_{XY}$$

This is always satisfied for new physics correcting V-A interactions only as $p_{LL} = d_{LL} = 1$ by definition

However for non-V-A new physics the consistency condition is not satisfied in general

Zahra Tabrizi, NTN fellow, Northwestern UNeutrino Energy Ev [GeV]

FASERv

- Downstream of ATLAS at of 480 m: ۰
- Ideal for detecting high-energy neutrinos at LHC; ۲
- 1.1-t of tungsten material;
- Several production modes; ۲
- Pion and Kaon decays are the dominant ones; ۲

Falkowski, González-Alonso, Kopp, Soreq, ZT, JHEP (2021)

Zahra Tabrizi, NTN fellow, Northwestern U.

EFT at FASERv

Falkowski, González-Alonso, Kopp, Soreq, ZT, JHEP (2021)

- > Results are statistics dominated: $\nu_e \sim 1000$, $\nu_{\mu} \sim 5000$, $\nu_{\tau} \sim 10$
- > Optimistic systematic uncertainties: 5% on ν_e , 10% on ν_{μ} , 15% on ν_{τ}
- > Conservative systematic uncertainties: 30% on ν_e , 40% on ν_{μ} , 50% on ν_{τ}

EFT at FASERv

Falkowski, González-Alonso, Kopp, Soreq, ZT, JHEP (2021)

- FASERv: colored bars
- Top: Conservative/Optimistic flux uncertainties
- Bottom: High luminosity LHC

- No SM Oscillation;
- Access to all Flavors;
- Low statistics;
- But large Flux Enhancements;

New physics reach at multi-TeV

Reactor Experiments

Daya Bay:

- 6 reactor cores;
- 8 anti-neutrino detectors;
- 3 near and far experimental halls located at 400 m, 512 m and 1610 m;
- Has observed ~ 4 million anti-neutrino events in 1958 days of data taking;

Daya Bay Collaboration, D. Adey et al., (2018)

RENO:

- 6 reactor cores;
- 2 near and far anti-neutrino detectors located at 367 m and 1440 m;
- Has observed ~ 1 million anti-neutrino events in 2200 days of data taking

RENO Collaboration, G. Bak et al., (2018)

Zahra Tabrizi, NTN fellow, Northwestern U.

Inverse Detection Beta

Decay

Falkowski, González-Alonso, ZT, JHEP (2019)

$$p^+ + \overline{\nu_e} \rightarrow e^+ + n^0$$

 $d_{LL} = 1, \quad d_{RL} = \frac{1 - 3g_A^2}{1 + 3g_A^2}, \quad d_{SL} = d_{SR} = -\frac{g_S}{1 + 3g_A^2} \frac{m_e}{E_\nu - \Delta}, \quad d_{TL} = -d_{TR} = \frac{3g_A g_T}{1 + 3g_A^2} \frac{m_e}{E_\nu - \Delta}$ **IBD** will be sensitive to the scalar and tensor NP!
depend on neutrino energy

 $\Delta \equiv m_n - m_p \approx 1.29 \text{ MeV}$

 $g_A = 1.2728 \pm 0.0017$, $g_S = 1.02 \pm 0.11$, $g_P = 349 \pm 9$, $g_T = 0.987 \pm 0.055$.

$$\sigma^{Total} \sim \sigma^{SM} (1 + \varepsilon_X d_{XL} + \varepsilon_X^2 d_{XX})$$

Inverse Beta Decay

Falkowski, González-Alonso, ZT, JHEP (2019)

$$p^+ + \overline{\nu}_e \rightarrow e^+ + n^0$$

DO NOT depend on neutrino energy!!!

$$\sigma^{Total} \sim \sigma^{SM}(1 + \varepsilon_X d_{XL} + \varepsilon_X^2 d_{XX})$$

EFT and Oscillation: Reactor Experiments

Daya Bay Collaboration: arXiv:2401.02901

Falkowski, González-Alonso, ZT, JHEP (2019)

- SM Oscillation;
- Access to one Flavors;
- Very High statistics;
- But EFT-Oscillation degeneracy;
- Combining with other experiments will increase the sensitivity