

SBN Oscillation Physics with SPINE SBN SPINE workshop

September 29, 2025 to October 3, 2025 at Columbia University, Nevis Laboratories

Dante Totani - CSU

Oct. 2nd 2025

Short Baseline Neutrino Anomalies

Short Baseline Anomalies

Experimental anomalies have been reported over the past 20 years from a variety of experiments studying neutrinos at short baselines (less than 1 km).

Experiment	Type	Channel	Significance	
LSND	DAR	$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \text{ CC}$	3.8σ	1
MiniBooNE	SBL accelerator	$\nu_{\mu} \rightarrow \nu_{e} \text{ CC}$	3.4σ	
MiniBooNE	SBL accelerator	$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \text{ CC}$	2.8σ	IJ
GALLEX/SAGE	Source - e capture	ν_e disappearance	2.8σ	1
Reactors	Beta-decay	$\bar{\nu}_e$ disappearance	3.0σ	

 $v_{\rm e}$ appearance

 $v_{\rm e}$ disappearance

K. N. Abazajian et al. "Light Sterile Neutrinos: A Whitepaper", arXiv:1204.5379 [hep-ph], (2012)

Common interpretation is as evidence for one or more additional, mostly "sterile" neutrino states driving oscillations at $\Delta m^2 \sim 1 \text{eV}^2$ and a relatively small sin²20.

Confirmation of the sterile neutrino hypothesis would be a major discovery, opening a window onto a particle sector not accessible through SM interactions. A definitive null result would settle a long-standing open question in neutrino physics with possible implications for future neutrino oscillation experiments.

SBN program at Fermilab

SBN program at Fermilab

BNB and NuMI

Detector	Active LAr Mass	Dist.from BNB Target	w.r.t.	Dist.from NuMI Target	Angle w.r.t. NuMI
SBND:	112 tons	110 m	0 rad	401 m	0.53 rad
MicroBooNE:	87 tons	470 m	0 rad	685 m	0.14 rad
ICARUS:	476 tons	600 m	0 rad	803 m	0.097 rad

Booster Neutrino Beam (BNB)

- 8 GeV protons from Booster
 - Up to 5.3 Hz repetition rate
 - \circ 5 x 10¹² protons per pulse, 1.6 μ s spil
 - ⟨E, ⟩~700 MeV
- SBN Detector interaction rares:
 - \circ SBND: 0.25 Hz v, 0.03 Hz cosmic
 - o ICARUS: 0.03 Hz *v*, 0.14 Hz cosmic

BNB v flux at SBND

BNB v flux at ICARUS

https://arxiv.org/pdf/1503.01520

Physic goals of the SBN program

The 3 detector setup of the SBN program allows for a sensitive search of the Δm^2 regions highlighted by anomalies in the above experiments.

Baseline of 600 m and the BNB v energy ~700 MeV

The basis of the search is \mathbf{v}_{μ} disappearance and \mathbf{v}_{e} appearance assuming a 3 + 1 sterile neutrino model.

Physic goals of the SBN program

In a 3 + 1 sterile neutrino model with: $\Delta m^2_{41} \gg \left| \Delta m^2_{32} \right|, \Delta m^2_{21}$ oscillations at short-baseline experiments can be well described by a two-flavor vacuum oscillation formula,

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \delta_{\alpha\beta} - 4 \left| U_{\alpha\beta} \right|^2 \left(\delta_{\alpha\beta} - \left| U_{\alpha\beta} \right|^2 \right) \sin^2 \left(\frac{\Delta m_{41}^2 L}{4E} \right)$$

Each oscillation channels $\,
u_{lpha}
ightarrow \,
u_{eta}$ is driven by a effective mixing angle: $heta_{lphaeta}$

$$\nu_{\mu} \rightarrow \nu_{e} \longrightarrow \sin^{2}(2\theta_{\mu e}) = 4 \left| U_{\mu 4} \right|^{2} \left| U_{e 4} \right|^{2} \longrightarrow \text{(LSND, MiniBooNE)}$$

$$\nu_{e} \rightarrow \nu_{e} \longrightarrow \sin^{2}(2\theta_{e e}) = 4 \left| U_{e 4} \right|^{2} \left(1 - \left| U_{e 4} \right|^{2} \right) \longrightarrow \text{(reactor, gallium)}$$

$$\nu_{\mu} \rightarrow \nu_{\mu} \longrightarrow \sin^{2}(2\theta_{\mu \mu}) = 4 \left| U_{\mu 4} \right|^{2} \left(1 - \left| U_{\mu 4} \right|^{2} \right) \longrightarrow \text{(no anomalies observed)}$$

Physic goals of the SBN program

The key aspect of SBN that is ONLY enabled with multiple detectors is that \mathbf{v}_{e} appearance cannot occur in without \mathbf{v}_{u} disappearance

$$P_{\nu_{\mu} \to \nu_{\mu}}^{3+1} = 1 - \sin^2(2\theta_{\mu\mu}) \sin^2\left(\frac{\Delta m_{41}^2 L}{4E}\right)$$

$$P_{\nu\mu\to\nu_e}^{3+1} = \sin^2\left(2\theta_{\mu e}\right)\sin^2\left(\frac{\Delta m_{41}^2 L}{4E}\right)$$

$$P_{\nu_e \to \nu_e}^{3+1} = 1 - \sin^2(2\theta_{ee}) \sin^2\left(\frac{\Delta m_{41}^2 L}{4E}\right)$$

The parameters dependence can be used to overconstrain the parameter space by observing $\mathbf{v}_{\rm e}$ appearance together with \mathbf{v}_{μ} disappearance (and $\mathbf{v}_{\rm e}$ disappearance).

NOTE: BNB is not a pure \mathbf{v}_{μ} , a disappearance of the BNB \mathbf{v}_{e} component need to be take into account.

SBN Near and Far detectors

Neutrino energy (MeV)

The locations of the near and far detectors are optimized for maximal sensitivity in the most relevant ranges of oscillation parameters.

(a,b) $\mathbf{v}_{\mu} \rightarrow \mathbf{v}_{e}$ oscillation probability for a 700 MeV neutrino as a function of the baseline for two different benchmark points in a 3+1 sterile neutrino scenario.

(c,d) $\mathbf{v}_{\mu} \rightarrow \mathbf{v}_{\rm e}$ oscillation probabilities, at 110 m and 600 m, as a function of the neutrino energy for the same benchmark points.

(Bottom) The far-near ratio of appearance probabilities.

SBN Near and Far detectors

- Multiple detectors using the same technology enables sensitive searches for $v_{\rm e}$ appearance and $v_{\rm u}$ disappearance within the same experiment.
 - Correlations between detectors (same beam and detection technique) allow for cancellations in systematic uncertainties on backgrounds
- Direct probe of v_e disappearance using a neutrino beam rather than lower energy (MeV) reactor antineutrinos
 - ICARUS will use v_e disappearance from NuMI as part of 3+1 neutrino model investigation

BND (Near, ~110 m)

- Primary role: flux + cross-section precision, systematics control.
- Measures un-oscillated BNB flux (v_{μ}, v_{e}) .
- World's highest-statistics ν -Ar cross-section data (~7M $\nu_{\rm u}$, ~50k $\nu_{\rm e}$ in 3 yrs).
- Provides flux & cross-section constraints → reduces systematics.

ICARUS (Far, ~600 m)

- Primary role: oscillation sensitivity + higher-energy cross sections.
- Observes oscillated spectrum (v_{μ} disappearance, v_{e} appearance).
- Precision ν -Ar cross sections using NuMI off-axis (~300k ν_{μ} , ~10k ν_{μ} per year).
- Directly tests sterile neutrino models via v_e/v_{μ} disappearance.

SBND + ICARUS sterile oscillation sensitivity

- Address conclusively the LSND and MiniBooNE anomalies.
- SBND will measure the $v_{\rm e}$ and $v_{\rm u}$ components of the BNB with large statistics.
- ICARUS will search for an excess of v_e and a deficit of v_u using SBND's measurement as reference.

SBND+ICARUS will be able to explore the LSND-favored region with 5σ and will covers almost the full allowed LSND-MiniBooNE region with 5σ .

From the *v* interaction to the oscillation parameters

Liquid Argon TPC

Massive and homogeneous target, excellent tracking and calorimetric capabilities.

lonisation electrons:

- ~ 42000 e/MeV
- Drift toward wire planes inducing a signal.
- Response time = drift time (~ ms)
- 3D image reconstruction by combining coordinates on different wire planes at the same drift time

Scintillation Light:

- λ = 128 nm scintillation light
- 24000 γ/MeV @ 500V/cm
- Response time O(1 ns)

v interaction in SBND and ICARUS

SPINE - Scalable Particle Imaging with Neural Embeddings

UResNet for pixel feature extraction, **GrapPA** for superstructure formation

See François' slides https://indico.nevis.columbia.edu/event/11/contributions/99/

Paper: <u>arXiv:2102.01033</u>

SPINE: end-to-end reconstruction chain

SPINE provides an end-to-end reconstruction chain of particles and interactions in the TPC, demonstrating significantly improved performance compared to other approaches.

MEDULLA: new analysis framework and plotting tool

https://github.com/justinjmueller/medulla/tree/feature/medulla

- Modular, event-driven C++ framework for:
 - Physics analysis
 - Systematic uncertainty evaluation
 - Plotting
- Companion layer to SPINE reconstruction
- Declarative config interface for quick setup

Key features are simplicity and portability from one experiment to another:

- Set path → input flat CAF files (from SPINE)
- Define selection → cuts
- Choose output variables → branch

Run with executable maintained by SPINE team.

ICARUS $1\mu \text{Np CC} 0\pi$

PROfit: Global Fitting Framework

https://github.com/markrosslonergan/Elephant Vanishes/wiki

- Tool for oscillation and cross-section fits
- Integrates MC inputs, systematics, and correlations
- Supports **profiling and 2D parameter scans**
- Enables **signal injection** and "what-if" studies
- Portable across SBND, ICARUS, MicroBooNE, DUNE

Perform $\Delta \chi^2$ scans in oscillation parameters:

- Confidence regions in (Δm², sin²2θ)
- Impact of systematic models
- Data/MC agreement with full uncertainty propagation

Laying the groundwork toward SBN-wide analyses!

Proposed analysis and new ideas

Multiple channels analysis

The excellent SPINE performances allows to select independent channels to perform separate analysis. GENIE can provide a estimated event rates for many channels in SBND and ICARUS:

v_{μ} CC Channels

- CC Inclusive
- CC 0π

- CC 1π±
- CC ≥2π±
- CC ≥1π⁰

v, NC Channels

- NC Inclusive
- NC 0π
- NC 1π±
- NC ≥2π±
- NC ≥1π⁰

v_e Channels

- v CC Inclusive
- v_e NC Inclusive

High statistics:

 wide range of vµ CC and NC channels → precision cross-section studies.

Oscillation sensitivity:

- vµ disappearance (robust, high-statistics test).
- vµ → ve appearance (sensitive to LSND/MiniBooNE anomalies).

Rare processes accessible:

hyperon production, v–e scattering.

Systematics control:

 multiple topologies and final states constrain nuclear models.

Rare Channels

- Hyperon Λ⁰ Production
- Hyperon Σ* Production
- v-e Scattering (v + e \rightarrow v + e)

Analyses underway with SPINE at SBND and ICARUS

ICARUS

- 1. BNB vµ selection (J. Mueller, D. Totani)
- 2. BNB ve selection (J. Xia, Y-J. Jwa)
- 3. BNB vμ CC/NC-π0 selection (G. Naumann, L. Kashur)
- 4. NuMI ve selection (D. Carber)
- 5. NuMl vµ selection (J. Gao)
- 6. NuMl anti vµ selection with Michels (D. Senadheera)
- 7. NuMI S→ee selection for Higgs portal scalars (G. Gurung)

SBND

- 1. BNB vµ selection (B. Carlson, D. Totani, J. Mueller)
- 2. BNB ve selection (N. Oza, C. Fan)
- 3. BNB vμ CC/NC-π0 selection (G. Naumann, R. LaZur, B. Weiss)

See slides from Mike Mooney (SBND CM, June 2025) https://sbn-docdb.fnal.gov/cgi-bin/sso/ShowDocument?d ocid=41665

and Francois Drielsma (NEAT workshop, May 2025) https://indico.global/event/13925/contributions/125640/

Suggestions and/or other ideas are welcome!!

SPINE first step in SBN selection:

Main oscillation analyses using SPINE planned:

- (1) ICARUS-only v_µ disappearance analysis -> Final stage.
- (2) SBN-wide v_µ disappearance analysis -> Starting now! (main topic of these slides)
- (3) SBN-wide v_μ disappearance and v_e appearance analysis -> Near future

First look at two prospective selections for a joint muon disappearance analysis (SBND + ICARUS):

1μ1ρ0π, 1μΝρ0π, νμ CC inclusive

Other selections on the way for a joint analysis (under investigation now in SBND and ICARUS independently):

- vµ CC inclusive (B. Carlson, J. Mueller, D.Totani)
- νμ CC/NC-π0 (L. Kashur, G. Naumann, R. LaZur, B. Weiss)

Multiple selection options for 1μ 1p and 1μ Np:

Topology:

- vµCC -> 1µ and 0e required for all the cases
- 1p/Np -> at the least one p: 1p is a subset of Np (N>=1)
- 0π -> $0\pi^{\pm}$ and 0γ (-> $0\pi^{0}$)

TPC:

- Vertex in fiducial volume (FV)
- Contained/Not-contained (study both)

Scintillation Light (PMTs):

- Valid Flashmatch (required or not)
 - PMT timing -> under development
 - CRT match -> under development

4 cases analyzed for **1mu1p** and **1muNp** and both detectors

- Fiducial Volume
- •
- -

- Fiducial Volume
- Containment Cut
- -

- Fiducial Volume
- •
- Valid Flash Match

- Fiducial Volume
- Containment Cut
- Valid Flash Match

1μ 1p and 1μ Np:

Fiducial Volume only:

1μ1p0 <i>π</i>	SBND	ICARUS
Efficiency	80.5%	81.0%
Purity	83.8%	77.8%
Cosmic	3.3%	14.6%

1μNp0 <i>π</i>	SBND	ICARUS
Efficiency	74.4%	78.6%
Purity	87.4%	81.7%
Cosmic	3.4%	12.7%

1μ 1p and 1μ Np:

Fiducial Volume + Flashmatch

1μ1p0 <i>π</i>	SBND	ICARUS
Efficiency	75.8%	78.7%
Purity	86.8%	90.8%
Cosmic	0.1%	0.4%

1μNp0 <i>π</i>	SBND	ICARUS
Efficiency	70.3%	76.4%
Purity	90.5%	93.3%
Cosmic	0.2%	0.5%

δp_T vs. $p_n \rightarrow PROfit: 2D fit$

A useful tool is the possibility to implement a simultaneous fit on two different variables improving sensitivity using variables where background and signals behave differently:

1mu1p FV-only

cosmic background displacement between $\delta p_{\scriptscriptstyle T}$ and $p_{\scriptscriptstyle n}$

Preliminary Sensitivity Studies of an SBN 1µNp Disappearance Search with SPINE From Justin's talk at SBN Oscillation WG

From Justin's talk at SBN Oscillation WG https://sbn-docdb.fnal.gov/cqi-bin/sso/ShowDocument?docid=43417

• With SPINE, we already have a mature 1μ 1p and 1μ Np selection built for ICARUS

Moving forward to a SBN-wide sensitivity study.

Preliminary analysis snapshots:

- hypothetical source of additional cosmic rejection efficiency
- shrink the residual between reconstructed energy and true neutrino energy by some scale factor
- run the sensitivity calculation at multiple exposure values
- work in progress on systematic

Moving to v_{μ} CC inclusive:

TKI/GKI variables could provide signal/background discrimination in a 2D fit along with Visible Energy (reconstructed neutrino energy):

- Transverse momentum: δp_T Total missing momentum: p_n

See Ryan's slides (Dec 2024)

https://sbn-docdb.fnal.gov/cgi-bin/sso/RetrieveFile?docid=39380 &filename=SBND%20Dec%20Collab%20Meeting%20-%20Oscill ations%20w %20SPINE%20V4.pdf&version=1

- Muon initial dE/dx
- Flash score

See Brinden's slides (SBND CM, June 2025)

https://sbn-docdb.fnal.gov/cgi-bin/sso/ShowDocument?docid=41650

- Muon cathode offset
- Charge time containment
- Geometrical parameters
 - Neutrino vertex
 - Muon start/end point
 - Muon polar/azimuthal angle

SBND v_uCC inclusive: FV, with flashmatch vs TPC - geometric cuts

Applying some cuts on muon starting point and direction improve cosmic rejection in disfavor of uniformity, accompanied to TPC based cuts: time containment cut + dedx [1,7] + cathode offset [-2,2]

Valid flashmatch

SBND ν_{μ} CC Incl.

TPC /geometric cuts

SBND ν_{μ} CC Incl.

Next steps:

- Flash Match provide a powerful tool for cosmics rejection, need to improve/validate data-MC comparison
- Selections cuts based on TPC variable (time containment cut, dedx, cathode offset) seems to improve cosmic rejection
 - Better characterization needed
 - Symmetric SBND/ICARUS approach (i.e. time containment cut still not available in ICARUS)
- Single μ CC selection large cosmic contamination:
 - Developing alternative cuts to reject cosmics
- Investigating other selections topologies:
 - Sensitivity studies using PROfit.

Backup slides

SBND v_uCC inclusive: fiducial volume only

Selection: 1mu, 0e, in FV (no other cuts selections applied)

A huge amount of cosmics is present

Efficiency on true numuCC =89.5%

SBND v_uCC inclusive: fiducial volume + scintillation light cuts

Selection: 1mu, 0e, in FV + reco valid flash match

500

True v_uCC Lost (1922.6, 10.51%)

1.5 True Visible Energy [GeV]

Based on Brinden's selection:

https://sbn-docdb.fnal.gov/cgi-bin/ss o/ShowDocument?docid=41650

SBND v_µCC inclusive: TPC only cuts

Multiple parameter under investigation.

²/₃ of cosmic background removed but still large.

SBND v_µCC inclusive: TPC only cuts

Selection: 1mu0eX, in FV + time containment cut + dedx [1,7] + cathode offset [-2,2]

SBND v_{μ} CC inclusive channels split

Selection: 1mu0eX, in FV + time containment cut

Split in 4 gourps: Cont./Not Cont and 1mu only/1mu +X

4.58×1018 POT

ν_νCC Incl. (1814.3, 23.43%)

Cosmic (5788.7. 74.76%)

ν_μCC Incl. (1903.3, 3.95%) ν_uCC OOFV (2112.3, 4.39%).

Other CC v (24.6, 0.05%)

Cosmic (44095.1, 91.55%)

1.5

1.5

ν_μCC OOFV (80.5, 1.04%)

SBND v_{μ} CC: Sub channels proposed geometric cut

Specific sub-selections shows a huge amount of cosmic contamination.

Proposed approach:

- Split selection in sub categories
- Perform strong cuts on specific geometric variables showing peculiar distributions:

Selection: Single mu only, exiting TPC, in FV + time containment cut + dedx [1,7] + cathode offset [-2,2]

SBND v_uCC inclusive: FV, with flashmatch vs TPC - geometric cuts

Applying some cuts on muon starting point and direction improve cosmic rejection in disfavor of uniformity

SBND v_uCC inclusive: FV, with flashmatch vs TPC - geometric cuts

valid flashmatch

Muon polar and azimuthal angles are good parameter to check the bias introduced by cuts.

Flash match provide a powerful uniform cut w/o introducing major non-uniformity

geometric cuts

SBND ν_{μ} CC Incl.

SBND ν_{μ} CC Incl.

1μ 1p and 1μ Np:

Selection cut:

Fiducial Volume

1μ1p0 <i>π</i>	SBND	ICARUS
Efficiency	80.5%	81.0%
Purity	83.8%	77.8%
Cosmic	3.3%	14.6%

1μNp0 <i>π</i>	SBND	ICARUS
Efficiency	74.4%	78.6%
Purity	87.4%	81.7%
Cosmic	3.4%	12.7%

Selection cut:

- Fiducial Volume
- -
- Valid Flash Match

1μ1p0 <i>π</i>	SBND	ICARUS
Efficiency	75.8%	78.7%
Purity	86.8%	90.8%
Cosmic	0.1%	0.4%

1μNp0 <i>π</i>	SBND	ICARUS
Efficiency	70.3%	76.4%
Purity	90.5%	93.3%
Cosmic	0.2%	0.5%

Selection cut:

- Fiducial Volume
- Containment Cut
- .

1μ1p0 <i>π</i>	SBND	ICARUS
Efficiency	77.1%	77.1%
Purity	85.5%	86.8%
Cosmic	0.8%	1.7%

1μNp0 <i>π</i>	SBND	ICARUS
Efficiency	70.3%	74.3%
Purity	89.7%	90.1%
Cosmic	0.8%	1.4%

Selection cut:

- Fiducial Volume
- Containment Cut
- Valid Flash Match

1μ1p0 <i>π</i>	SBND	ICARUS
Efficiency	72.7%	75.2%
Purity	86.3%	88.6%
Cosmic	<0.1%	<0.1%

1μNp0 <i>π</i>	SBND	ICARUS
Efficiency	66.6%	72.5%
Purity	90.5%	91.6%
Cosmic	<0.1%	<0.1%

Purity x Efficiency (PxE)

SBND 1μ1ρ0 <i>π</i> FV	w/o flashmatch	with flashmatch
w/o containment	PxE = 0.67	PxE = 0.66
with containment	PxE = 0.66	PxE = 0.63

ICARUS 1μ1ρ0 <i>π</i> FV	w/o flashmatch	with flashmatch
w/o containment	PxE = 0.63	PxE = 0.71
with containment	PxE = 0.67	PxE = 0.67

SBND 1μΝρ0 <i>π</i> FV	w/o flashmatch	with flashmatch
w/o containment	PxE = 0.65	PxE = 0.63
with containment	PxE = 0.63	PxE = 0.60

ICARUS 1μΝρ0π FV	w/o flashmatch	with flashmatch
w/o containment	PxE = 0.64	PxE = 0.71
with containment	PxE = 0.67	PxE = 0.66

Preliminary Sensitivity Studies of an SBN 1µNp Disappearance Search with SPINE from Justin talk: https://sbn-docdb.fnal.gov/cgi-bin/sso/ShowDocument?docid=43417

SBN Oscillations Working Group Meeting — September 16, 2025

· Using a "default" binning scheme from the proposal that is not optimized

Fractional Uncertainties

SBN Oscillations Working Group Meeting — September 16, 2025

- Not a particularly pretty plot (there are only so many colors!), but it gives a sense of scale
- We can begin to resolve which systematics are important for this analysis
- Need to investigate some of the xsec systematics in ICARUS

SBND: 1e20

ICARUS: 5e19

All Flux+Xsec

Preliminary Sensitivity Studies of an SBN 1µNp Disappearance Search with SPINE from Justin talk: https://sbn-docdb.fnal.gov/cqi-bin/sso/ShowDocument?docid=43417

SBN Oscillations Working Group Meeting — September 16, 2025

- How do $1\mu 1p0\pi$ and $1\mu Np0\pi$ compare as target final states?
- The multi-proton final state covers higher energies and increases statistics
 - Observed expected improvement in stats-only sensitivity
 - Slightly higher sensitivity at higher Δm^2 (higher energy signal)
- In the interest of time, I will focus on studies with the multi-proton final state from here

The Impact of Cosmics

SBN Oscillations Working Group Meeting — September 16, 2025

- Idea: mock-up a hypothetical source of additional cosmic rejection efficiency (flat reduction)
- Provides an idea of how important additional cosmic rejection is
- One important caveat: CORSIKA cosmics have no assessed systematic uncertainty

Negligible improvement in *this* channel from additional cosmic rejection

The Impact of Energy Resolution

SBN Oscillations Working Group Meeting — September 16, 2025

- Idea: shrink the residual between reconstructed energy and true neutrino energy by some scale factor (25% here)
- Answers the question: how much can energy resolution improve this result?

Noticeable sensitivity gain by improving energy reconstruction (not terribly surprising)

Different SBND Exposure Targets

SBN Oscillations Working Group Meeting — September 16, 2025

- · What about statistics?
- Re-run the sensitivity calculation at a few choice exposure values:
 - 1e20 "nominal"
 - 5e19 an intermediate point
 - 5e18 "fixed Dev. Sample" (SBND)
- The one plot I had time to remake with the correct ICARUS exposure (2e20 POT)

Already "maxed out" at 5e19, but some sensitivity improvement present beyond the development sample exposure

