

Dr. Eduardo de la Fuente Acosta

Departamento de Física, CUCEI, Universidad de Guadalajara, México
High Altitude Water Cherenkov (HAWC) National Laboratory
*Project Professor (2025) at Institute for Cosmic Ray Research (ICRR), University of Tokyo
eduardo.delafuentea@academicos.udg.mx

Probing PeVatron Candidates with CO/H I and IR/mm Data: V4641 Sgr & LHAASO J2108+5157*.

Montserrat Montiel Dücker Romero
Instituto de Estudios Superiores de Monterrey (ITESM), Monterrey, México
Escuela de Ingeniería y Ciencias
A01642845@tec.mx

Unveiling Galactic PeVatrons with frontier multi-messenger observations and theoretical models, Oct 8 – 10, 2025, Nevis Labs, Columbia University

OUTLINE AND CONTEXT

I.- The enigmatic and Bizarre PeVatron candidate source LHAASO J2108+5157:

- -- Nobeyama's 45 m radio telescope observations (highest resolution observations to date)
 - Reliable computation of the density of Hydrogen; $n(H) = 2n(H_2) + n(H)$ at the highest angular resolution to test hadronic emission
 - Where is the counterpart?. We test Allison Mitchell's hypothesis with these density values

II.- The amazing PeVatron microquasar V4641 Sgr:

-- Efforts to solve the distance problem between the binary system and the extended gamma-ray emission: Are they related? What do the IR-mm wavelengths say about it?

LHAASO J2108+5157: A pretty enigmatic source

A&A 673, A75 (2023) https://doi.org/10.1051/0004-6361/202245086 © The Authors 2023

Astronomy Astrophysics

Multiwavelength study of the galactic PeVatron candidate LHAASO J2108+5157

S. Abe¹, A. Aguasca-Cabot², I. Agudo³, N. Alvarez Crespo⁴, L. A. Antonelli⁵, C. Aramo⁶, A. Arbet-Engels⁷,

Angular resolution of 8.5 arcmin Optically thick observations

Publ. Astron. Soc. Japan (2023) 75 (3), 546–566 https://doi.org/10.1093/pasj/psad018 Advance Access Publication Date: 2023 April 12

Detection of a new molecular cloud in the LHAASO J2108+5157 region supporting a hadronic PeVatron scenario[†]

Eduardo de la Fuente ^{1,2,4} Ivan Toledano-Juarez, ³ Kazumasa Kawata, ² Miguel A. Trinidad, ⁴ Daniel Tafoya, ⁵ Hidetoshi Sano, ⁶ Kazuki Tokuda, ⁷ Atsushi Nishimura, ⁸ Toshikazu Onishi, ⁹ Takashi Sako, ² Binita Hona, ¹⁰ Munehiro Ohnishi, ² and Masato Takita

Angular resolution of 3 arcmin optically thin observations

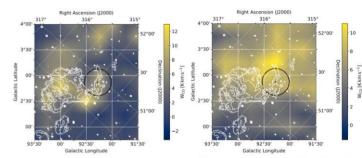
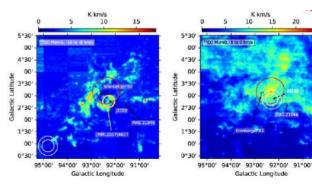



Fig. 6. Velocity-inegrated 12 CO intensity (W_{CO}) of two molecular clouds apatially coincident with the directions of 1.4 ASO 1.2 (Ne. 8):1. Left: Integrated velocity of the first Gaussian component peaking at $\gamma_1 \approx -1.18$ km s⁻¹, with corresponding component at $p_2 \approx -2.7$ km s⁻¹ and $d_3 \approx 2.0$ kpc. The white control represents 1420 MHz continuum emission from the Canadian Galactic Plane Survey (Thylor et al. 2003). The position of LiHaASO 1.2 (Ne. 8):1 indicated with a black circle (Cao et al. 2021a). Bilinear interpolation is used to smooth out the contributions from individual privace.

Unveiling Galactic PeVatrons with frontier multi-messenger observations and theoretical models, Oct 8 – 10, 2025, Nevis Labs, Columbia University

J2108 & V4641 Sgr

Evidence for a gamma-ray molecular target in the enigmatic PeVatron candidate LHAASO J2108+5157*

E. de la Fuente ^{1,2}, I. Toledano-Juárez³, K. Kawata², M. A. Trinidad^{4,5}, M. Yamagishi⁶, S. Takekawa⁷, D. Tafoya⁸, M. Ohnishi², A. Nishimura⁹, S. Kato², T. Sako², M. Takita², H. Sano¹⁰, and R. K. Yaday¹¹

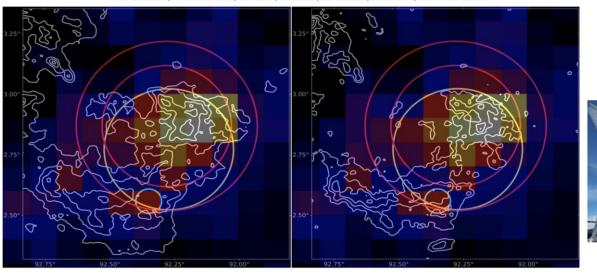
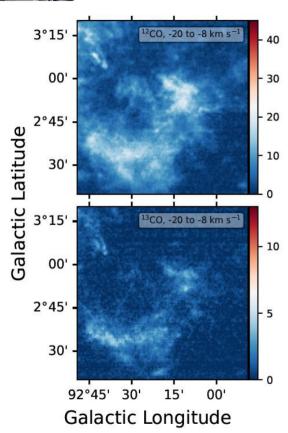
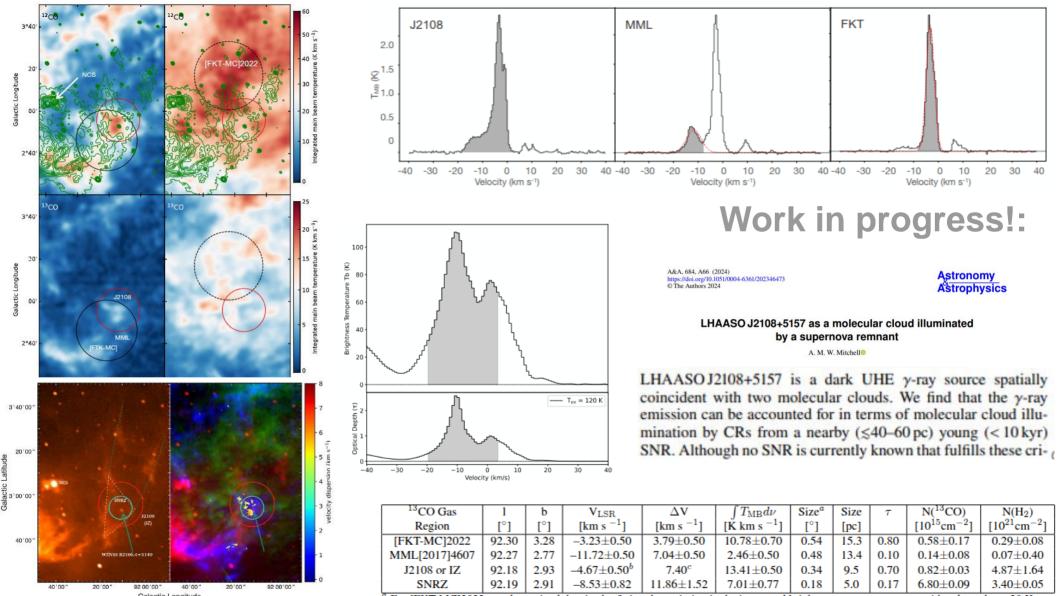
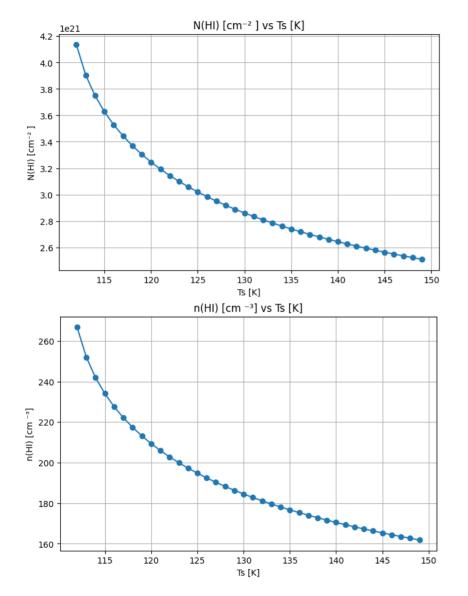



Table 4. Parameters and results of the hadronic model of Naima for the FTK molecular cloud


-	Distance	$N(H)^a$	n(H) ^a	Size	W_p	Cutoff
	[kpc]	$[10^{21} \text{ cm}^{-2}]$	$[cm^{-3}]$	[degree]	[10 ⁴⁶ erg]	[TeV]
	1.6±0.1	6.2±2.1	133±45	0.55±0.02	4.3+2.0	700+400


^a The column and number density of nucleons is calculated as $N(H) = 2N(H_2) + N(H_1)$ and $n(H) = 2n(H_2) +$ n(HI), respectively.

Optically THIN Gas!!!; tau = 0.2 on average

Angular resolution of 17 arcseconds!!

$$n(H2) = 210 + /-30 cm^{-3}$$

Ts = Tex = 120 K (fiducial)

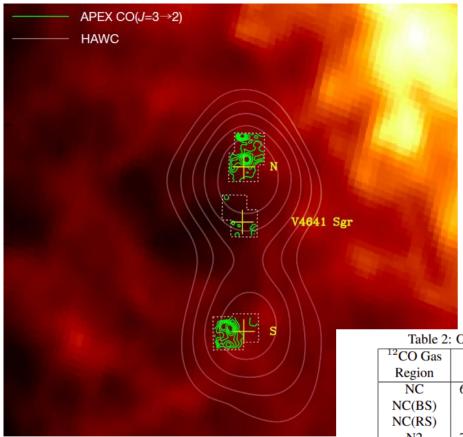
$$\left[\frac{N(\mathrm{H\,I})}{\mathrm{cm}^{-2}}\right] = 1.8224 \times 10^{18} \left[\frac{T_{\mathrm{ex}}}{\mathrm{K}}\right] \int_{\mathrm{linea}} -\ln\left[1 - \frac{T_{\mathrm{L}}(v)}{T_{\mathrm{ex}}}\right] \left[\frac{dv}{\mathrm{km~s}^{-1}}\right].$$

Integral = 14.84 km/s (from data)

For -20 to -8 km/s (zone of interest), tao = 0.3 - 2.6, with $tao_avg = 1.24$.

$$N(HI) = 3.25 \times 10^{21} \text{ cm}^{-2}$$

 $n(HI) = 209 \text{ cm}^{-3}$
 $n(H) = 2n(H2)+n(HI) = 629 +/- 60 \text{ cm}^{-3}$


THANK YOU MONTSERRAT!

OUTLINE AND CONTEXT

II.- The amazing PeVatron microquasar V4641 Sgr:

-- Efforts to solve the distance problem between the binary system and the extended gamma-ray emission: Are they related?, What the IR-mm wavelengths say about it?

Unveiling Galactic PeVatrons with frontier multi-messenger observations and theoretical models, Oct 8 – 10, 2025, Nevis Labs, Columbia University

II.- Radio, mm, and IR observations of V4641 Sgr

Molecular observations show large uncertainty in distance How can we solve that?

A solution is with IR-mm analysis on HAWC emission region (distance and extinction), unfortunately there is no detailed IR-mm study in the HAWC region.

Are the Gamma-Ray lobes connected with V4641 Sgr or projection in the sky?

 $\int T_{\rm MB} d\nu$

Distance^a Size (H₂) Size(HI)

Table 2: Observational parameters from 12 CO gas observations considering excitation temperature $T_{\rm exc} = 40$ K.

	00 000		"	Lon	<u> </u>	IMBan	Distance	DIZC (112)	SIZE(III)	, , l	
	Region	[°]	[°]	[km s ⁻¹]	[km s ⁻¹]	[K km s ⁻¹]	[kpc]	[°]	[°]		
	NC	6.990	-4.643	-26.0 ± 0.1	3.6±0.2	1.60 ± 0.08	4 and 12	0.04	0.20	0.012	
	NC(BS)	_	_	-30.1 ± 0.5	4.2 ± 0.8	$0.38{\pm}0.08$	_	_	_	<u> </u>	
	NC(RS)	_		-21.5 ± 0.1	$2.5{\pm}0.2$	0.41 ± 0.08	<u> </u>	—	_	<u> </u>	
	N2	7.085	-4.612	-32.7 ± 0.1	3.7 ± 0.1	$2.67{\pm}0.08$	4 and 12	0.03	0.20	0.018	
	N3	6.975	-4.609	+126.2±0.7	11.0 ± 1.8	$0.55{\pm}0.08$	8.1	0.01	0.18	0.001	
	S6	6.374	-4.964	+110.9±0.4	$4.8 {\pm} 0.8$	$0.33{\pm}0.08$	8.1	0.01	0.22	0.002	
Work in progress!:	S5	6.365	-5.035	+84.9±0.5	6.6 ± 1.1	$0.37{\pm}0.08$	8.5	0.03	0.20	0.001	
Work in progressi.	S4	6.373	-5.043	-30.5 ± 0.7	7.6 ± 1.7	$0.33{\pm}0.08$	4 to 12	0.02	0.20	0.001	
	S3	6.336	-5.098	-44.6 ± 0.1	2.3 ± 0.3	$0.32{\pm}0.08$	5 to 11	0.02	0.26	0.003	
Pioner APEX observations	S2	6.395	-5.032	-2.6 ± 0.2	5.6 ± 0.6	1.21 ± 0.08	2.0	0.03	0.24	0.006	
	SC	6.400	-5.030	+7.4±0.3	1.6 ± 0.1	1.32 ± 0.08	2.6	0.10	0.32	0.023	
	RP	6.367	-4.866	$+28.9\pm0.1$	2.7 ± 0.1	2.68 ± 0.03	6.0	0.05		i I	

^a Distance computed using the parallax-based distance calculator from Reid et al. (2019) and combined probability.

IR and mm observations in V4641 Sgr: RGB images

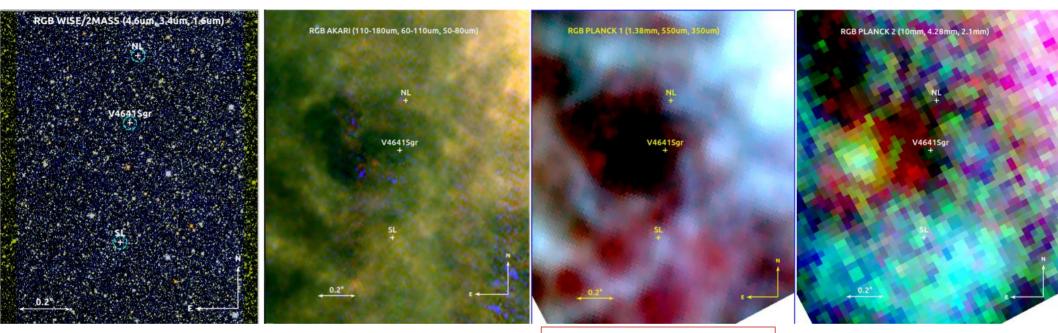
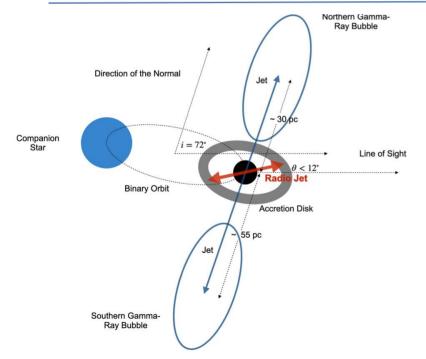


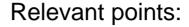

Table 1: Summary of distances based on GAIA DR3 stellar distributions

Target	J2000 Coordinates	Search radius	Number of	$<\Delta d_{lower}>^1$	$<\Delta d_{upper}>^2$	Estimated distance
name	RA(h:min:sec), Dec(deg:arcmin:arcsec)	(arcmin)	GAIA sources ³	(pc)	(pc)	(kpc)
North Lobe	18:19:13.3609 -25:08:24.891	7	6868 (113)	496	487	$6.02^{+1.31}_{-1.32}$
South Lobe	18:19:31.5671 -25:52:40.719	7	7163 (91)	661	469	$\begin{array}{c} 6.02 {}^{+1.31}_{-1.32} \\ 6.53 {}^{+1.26}_{-1.45} \\ 6.19 {}^{+1.57}_{-1.69} \end{array}$
V4641Sgr	18:19:21.6340 -25:24:25.849	7	7060 (130)	650	525	$6.19^{+1.57}_{-1.69}$
PCCS2E G006.88-05.14	18:20:59.4521 -25:28:35.493	10	13682 (243)	599	497	$6.18 {}^{+1.56}_{-1.67}$

 $[\]begin{array}{l} \frac{1}{2} \Delta d_{lower} = d - d_{lower} \\ \frac{2}{2} \Delta d_{upper} = d_{upper} - d \\ \frac{3}{2} \end{array}$ In parenthesis are the number of sources in the addopted central range of histograms (see text).

Distances are estimated from GAIA DR3 public data


(https://gea.esac.esa.int/archive/)



Target	Estimated distance
name	(kpc)
North Lobe	$6.02^{+1.31}_{-1.32}$
South Lobe	$6.53 {}^{+1.26}_{-1.45}$
V4641Sgr	$6.19^{+1.57}_{-1.69}$
PCCS2E G006.88-05.14	$6.18 {}^{+1.56}_{-1.67}$

- 1. Estimated distance is the average distance of sources in the central part of the histogram
- 2. Errors are statistical and observational from GAIA (d, d_{lower}, d_{upper})

Target	Estimated distance
name	(kpc)
North Lobe	$6.02^{+1.31}_{-1.32}$
South Lobe	$6.53 {}^{+1.26}_{-1.45}$
V4641Sgr	$6.19^{+1.57}_{-1.69}$
PCCS2E G006.88-05.14	$6.18 {}^{+1.56}_{-1.67}$

- 1. All 4 targets are at a similar distance
- 2. NL is slightly nearer than SL, in agreement with Alfaro et al. 2024 scheme
- 3. V4641Sgr and the millimeter clump PCCS2E G006.88-05.14 are at the same distance

Dr. Eduardo de la Fuente Acosta

Departamento de Física, CUCEI, Universidad de Guadalajara, México
High Altitude Water Cherenkov (HAWC) National Laboratory
*Project Professor (2025) at Institute for Cosmic Ray Research (ICRR), University of Tokyo
eduardo.delafuentea@academicos.udg.mx

GRACIAS: THANK YOU

Montserrat Montiel Dücker Romero
Instituto de Estudios Superiores de Monterrey (ITESM), Monterrey, México
Escuela de Ingeniería y Ciencias
A01642845@tec.mx

Unveiling Galactic PeVatrons with frontier multi-messenger observations and theoretical models, Oct 8 – 10, 2025, Nevis Labs, Columbia University

