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➤ The source of Galactic CRs up to the knee (~PeV) is still not 
known  

➤ SNRs theoretically have the right energetics and spectral slope 
from diffusive shock acceleration (+ propagation effects) 

➤ Problems from observations (e.g., Suzuki+2022) and theory (e.g., 
Bell+2013, Cristofari+2021)

Evoli 2020

University of Chicago                                    Emily Simon | 8 October, 2025                         CDHY PeVatron Workshop

SNR PEVATRONS

Galactic

Cas A, MAGIC 2017 Diesing 2023
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Gamma rays are ambiguous— could be from inverse Compton or from  decay 

Neutrinos are unambiguous hadronic byproducts. They also retain pointing (unlike cosmic rays).

π0
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DETECTING NEUTRINOS
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Stacking analyses give us a chance at detecting (aggregate) faint 
signals, essentially: (summed signal)/(summed noise) 

Aartsen+2017m, IceCube

Richard S. Wright Jr. 
Sky & Telescope

Leptonic sources increase noise without increasing neutrino signal
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Aartsen+2017j, IceCube

IceCube’s sensitivity is a function 
of the source’s declination and 
neutrino energy
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GALACTIC SNR CENSUS

Total known galactic SNRs: 310 (Green 2025, Ferrand and 
Safi-Harb 2012)
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Total known galactic SNRs: 310 (Green 2025, Ferrand and 
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Chandra X-rays: 144 (Chandra SNR catalog)

Fermi -rays: 30 + several candidates (Fermi’s First SNR 
catalog, Acero+2016)

γ

Background image: Gaia DR3,ESA/Gaia/DPAC, Stefan Payne-Wardenaar 
Approximate distances from: Chandra, Ranasinghe+2022, Wang+2020

+Additional data from HESS, HAWC, VERITAS, 
MAGIC, and LHAASO

Sort into three catalogs 

➤ Tier 1: Extremely likely to be hadronic 

➤ Tier 2: Hadronic at low energies, inconclusive at TeV 

➤ Tier 3: Possible sub-dominant hadronic component 
with relatively high flux



DISTINGUISHING HADRONIC VERSUS LEPTONIC SPECTRA
Diffusive Shock Acceleration (DSA) produces 
energy power laws: 

, with  

For strong shocks: , and thus . 
Corrections due to self-generated magnetic fields 
suggest  at strong shocks 
(Haggerty+2020, Caprioli+2020)

dN
dE

∝ E−p p = (r + 2)/(r − 1)

r → 4 p ≈ 2

p ≈ 2.2 − 2.4
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Inverse Compton (the dominant leptonic 
mechanism) produces: 

, where  is the electron spectral 

index. 

For a  electron spectrum,  

dN
dE

∝ E(−p−1)/2 p

p ≈ 2
dN
dE

∝ E−1.5

Vela Jr.
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p > 2

p < 2Hadronic 
spectra are soft 

Leptonic spectra 
are hard



RESULTS
Tiers 1 & 2



TIER 1 & 2 SELECTIONS
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E. Simon, R. Diesing, D. Caprioli, S. Sclafani, in prep

Tier 1, assuming exponential cutoffs Tier 2, assuming no cutoff



INDIVIDUAL SOURCE SENSITIVITY
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PRELIMINARY

E. Simon, R. Diesing, D. Caprioli, S. Sclafani, in prep

Using IceCube public data, 10 year 
tracks



PART 1 CONCLUSIONS
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➤ We used DSA-driven theory to create catalogs of the population of 
Galactic SNRs with TeV are very likely to be hadronic for a future 
neutrino stacking analysis with IceCube 

➤ Catalog may also be useful for other neutrino experiments 
➤ A detection (or lack of one when we expect it) would provide a very 

strong constraint on SNRs as sources of Galactic cosmic rays 
➤ Do SNR neutrinos extend to ~200 TeV energies (implying ~PeV 

parent protons)? 
➤ Is the spectral index what we expect from DSA? 
➤ Can we infer whether Tiers 2 and 3 contain hadronic SNRs based 

on observed (or not observed) neutrinos? 

Eγ ≳

Richard S. Wright Jr. 
Sky & Telescope
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u1u2

shock

jCR

We know we need amplified magnetic fields to 
scatter CRs, otherwise we never make it to high 
energies 

The growth rate of the Bell instability depends on 
the CR current in the upstream: 

γ ∝ jCR

Emax = 0.005
PCR

ρu2
sh

ρu3
sht

μ0

ρ

Allows us to express the maximum 
energy in terms of the CR pressure and 
shock velocity:

Bell+04, Bell+13

For typical SNR parameters,  
 TeV  

We want to test this from first 
principles with kinetic simulations

Emax ∼ 100
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Traditional reflecting-wall (RW) style simulations have 
shrinking upstreams over time

The faux-shock (FS) setup is in the shock frame and has a 
fixed upstream length (arXiv:2507.14282)

We give up a self-consistent description of injection, and we 
get in return: high CR statistics and the ability to run large 
boxes for long times

Great match between 
FS and RW 
simulations

plasma entersplasma  
reflects

plasma entersshock-like 
boundary 
condition
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How does  compare with 
predictions from Bell et al. 2013?

Emax(t)

E. Simon, D. Caprioli, C. Haggerty, 
B. Reville, in prep
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How does  compare with 
predictions from Bell et al. 2013?

Emax(t) How does the saturation of the 
magnetic field compare with Zacharegkas 

et. al 2024?

How does the diffusion 
coefficient compare to Bohm 

diffusion? (Caprioli et al. 2014c)

We see very good agreement between predictions and simulations for shocks with MA ≲ 30

E. Simon, D. Caprioli, C. Haggerty, 
B. Reville, in prep



HIGH MACH NUMBER SIMS WITH THE FAUX SHOCK
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arise that go beyond the amplification 
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HIGH MACH NUMBER SIMS WITH REFLECTING WALL SHOCKS
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HIGH MACH NUMBER SIMS WITH REFLECTING WALL SHOCKS
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We see something similar in RW simulations 

Big question: does this affect particle acceleration, and can it accelerate particles faster than Bell?

Reflecting wall, MA = 66.667 Faux shock, MA = 66.667



PART 2 CONCLUSIONS
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➤ The Bell instability predicts that CRs can not be accelerated beyond ~100 TeV in typical 
SNRs 

➤ Hybrid simulations with the faux shock setup show close agreement with  

➤ See close agreement with predictions from Bell+13 and Zacharegkas+24 for low  
shocks 

➤ For higher , we see non-linear structures forming with magnetic fields larger than 
those predicted from the Bell instability 
➤ Similar behavior with faux shock and reflecting wall style simulations 

➤ Remains some possibility that there is physics beyond Bell at higher  shocks which 
might increase the rate of particle acceleration 

Thanks! 

MA

MA

MA
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TIER TWO CATALOG: HADRONIC WITH CAVEATS

Li+2021

MGRO 1908+06

Ackermann+2013

sub-TeV observed emission

Pion decay bump, but switches 
to hard, leptonic spectrum at 

highest energies

Sources which are at least partially hadronic but don’t meet 
all of the criteria for Tier 1

Cas A

Possibly seeing the same for 
Cas A (Tier 1) with new data 

from LHAASO?

Cao+2025

pp

γIC



TIER THREE CATALOG: LEPTONIC BUT LUMINOUS 

H.E.S.S. Collaboration, 2018

Tier 3: Sources which are spectrally steep between 
GeV - TeV (leptonic-dominated), but have a 
differential GeV flux  average GeV flux for Tier 1≥

Vela Jr.

➤ Under the most optimistic assumptions 

possible ( ), how much hadronic 

emission can be buried? 

➤ Is it comparable to the sources in Tier 1?

dN
dE

∝ E−2
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➤ Under the most optimistic assumptions 

possible ( ), how much hadronic 

emission can be buried? 

➤ Is it comparable to the sources in Tier 1?
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Tier 3: Sources which are spectrally steep between 
GeV - TeV (leptonic-dominated), but have a 
differential GeV flux  average GeV flux for Tier 1≥

Vela Jr.

PRELIMINARY

Hadronic component can have quite a high “buried” contribution. 

We then compare this upper limit to a realistic estimate based on the shock kinematics and observed SNR 
environment.


