High-Synchrotron Peaked Pevatron Sources
in the Galaxy [A.K.A. Critical Need for Improved
MeV/GeV Gamma-Ray Mission...!]

P. Coppi, Yale

Why worry: AGILE just died,
Swift (1 gyro) and Fermi no longer young.

After COSI, there 1s NO new mission 1n
~100 keV — GeV energy range that has gone beyond
concept/study stage in US/Europe/Japan. This energy range
can only be done from space. Not a key priority

in US 2020 Decadal Survey/P5 Particle Physics reports.
Maybe China will come to the rescue??

Big problem since Fermi-like mission requires 10+ years.
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Energy Coverage — ~100 keV-MeV-GeV can only be
done from space ... and there’s a big gap there!! Especially at “MeV.
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(2013)
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Differential sensitivities for different X-ray and y-ray instruments looking at an isolated

point source. Curves for the Chandra/ACIS-S, the Suzaku/HXD (PIN and GSO), the INTEGRAL/IBIS
(from the 2009 IBIS Observer’s Manual), and the ASTRO-H/HXI,SGD are the 30 sensitivity curves
for 100 ks exposures. A spectral bin with AE/E = 1 is assumed for Chandra and AE/E = 0.5

for the other instruments.



Courtesy Svanik/GRAMS collaboration]

Motivation |: MeV Gamma-ray Survey

Images: ESA

Spectral features in particle accelerators
Transition from thermal to non-thermal emission
Pion bump to identify hadronic accelerators
Constrain magnetic properties and energetics of
relativistic jets from

Line emissions and nucleosynthesis
Measure chemical yields from CCSNe
r-process signatures from kilonovae and magnetar
flares
Probe 511 keV positron annihilation excess

EM counterparts to multi-messenger events
GRBs associated with NS merger events
MeV photon cascades from cosmic neutrino sources




Nhy ~MeV? |s there anything special there?
[A “hidden” 100 MeV source]

IASTROGAM N

ASTRO-H <:| (straddles
47300 511 keV!)

ls=10, |,4,=10 (constant)

10 100 1600 104

E (keV)
Figure 1. The transition from a non-thermal plasma (I;;, = 0)
to a thermally dominated plasma (l;, /l,,¢5, = 30). The soft input
into the source has a compactness [, = 10 and has a blackbody
spectrum with 73, = 15 eV. The assumed source radius is R =
10'* cm, and a background plasma is present with optical depth
Tp = 0.1,

E~511 keV
special energy
for physics:
Klein-Nishina,
pair production,
pair annihilation

—Spectral features
expected!
—Constraints

If not seen!

Note: 511 keV

special energy from
binding energy/particle,
energetics, etc.
considerations



The trouble with AGN jets and ICECUBE neutrino(s)... o) Kelnert 2008
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Figure 3: Left: Photo-pion production via excitation of a A-resonance in collision of an ultra-high energy 10 102 16—2 16-1
cosmic ray proton with a CMB photon. Right: Trajectory of a super-GZK proton through the CMB, suffering 2=E. /E
attenuation due to repetitive photo-pion production [Credits: W. Bietenholz, arXiv:1305.1346]. Yu P

Figure 9: Energy spectra of all muonic neutrinos described

e [f one particle is a photon (eg = po and my = 0), then threshold energy by Eq.(62) and (66) for three energies of incident protons:

0.1 TeV (curve 1), 100 TeV (curve 2) and 1000 TeV (curve 3).
2 . om
ea |m—/1f—1L1cosl|=0me (14+—
2my

Example: Consider reaction p+~ — p+7” on CMB photons (mean energy
By =< hv >~ 3kT ~ 7 x 107* eV [SI], e3 = Ey/c). Threshold energy for
most favourable collision angle (cos § = —1 head-on) for high ~1:

m.oc m.o
: ( +o5— ) or 7y =10t
€9 2m,, Rieger lecture note

In delta-function approximation, pion has ~0.1-.2 energy of proton, and neutrino has ~.3 of

energy of pion. ICECUBE sees neutrinos from ~1 TeV — 1 PeV. To make TeV neutrino, need

proton of energy ~20 TeV, or y~2x10%. => , and lots of them (for
efficient production)... where do you get these? Compactness (pair production) problem...

—> Cascade to MeV — GeV
= (NOT Fermi range if X-rays come from corona...)




Why (soft) gamma-rays for non-jet AGN? Need broad-band spectra to constrain
physics, reprocessing, measure bolometric luminosity, etc...
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Compilation by A. Zdziarski



Spectra of this quality generally do not exist for AGN!

B 7y, _Soft Intermediate

Ve
IU)
o
s
O
o] )]
-
)]
S
=
=
=]

.0 10.0
11111 [keV] | |
1111 l L 1 111111l l I 1 11111 l I 1 11111 l

1 10 100 1000
E (keV)

104

Possible AGN spectral “states” not well-sampled!



Polarization: broad energy coverage important too!
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What about a jetted source, €.g., microquasar pevatron?

NuSTAR VERITAS (this work)
RXTE HAWC S S 4 3 3

Fermi-LAT 41 LHAASO KM2A
HESS 3 LHAASO WCDA Eastern Lobe

160 MeV,
synchrotron “burnoff’?
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MeV “gap”':

Veritas, T. Kleiner et al.
Preliminary ICRC 2025
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~PeV gamma-rays (even if from pion decay) => PeV+ electrons
=> For micro-milli Gauss magnetic fields => ~100 keV — MeV+ synchrotron!




From J. McEnry lecture, CDY/MPIK school

MeV Gamma-ray Instrument Landscape

Understanding the MeV universe requires a mult/ instrument, multi-technique approach.
Time Projection Chambers (pair):

(AJEPT, HARPO, LArGO) high
angular resolution, good
polarization capability, no
background veto

Spectrometers / mappers
(Compton):
(COSI, GRX) high resolution

spectroscopy, wide field of view,

some polarization capability
2016 COSI Balloon Flight!

Coded mask/Occulation

(Theseus, Swift-BAT, Fermi-GBM, LOX...), no
background veto, very good for transients

Continuum / survey mappers (Pair
& Compton): (AMEGO, ComPair,
MEGA, AstroGAM) high flux
sensitivity, moderate resolution
spectroscopy, wide field of view,
broad energy coverage, some
polarization capability




COSI [Solid-State Compton Telescope] — launch 08/2027 ? [or never ®)]

Germanium
detectors in a Active
vacuum cryostat A E shields

Radiator : « ' "™ Front-end

for heatI i o4’ | electronics

remova | with ASIC
' | readout

Requirement

or polarization

Reporting short GRB detections
¢ depends on GRB fluence)

w line point source sensitivity i of surv servations.
minimum detectable polarization in 2-years of survey observations.




COSI [Solid-State Compton Telescope] — launch 08/2027 ? [or never @]
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Figure 2: Narrow-line (a) and continuum (b) sensitivities based on COSI's requirements compared to current
and previous instruments. The sensitivity curves are for point sources at the 3-c level during 2 years of COSI
survey time. Due to the all-sky coverage that COSI obtains, these sensitivities will be reached for every
source in the sky.




COSI great for Cyg X-1 — but, one of brightest sources...

B 7y, _Soft Intermediate _

Ve
IU)
o
s
O
o] )]
-
)]
S
=
=
=]

.0 10.0
11111 [keV] | |
1111 l L 1 111111l l I 1 11111 l I 1 11111 l 1 11111

1 10 100 1000 104
E (keV)




Not so o.k. for ~pevatrons, and LHAASO/CTA/SWGO sources

NuSTAR VERITAS (this work)
RXTE HAWC S S 4 3 3

Fermi-LAT 41 LHAASO KM2A
HESS 3 LHAASO WCDA Eastern Lobe

~COSI sensitivity
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~PeV gamma-rays (even if from pion decay) => PeV+ electrons
=> For micro-milli Gauss magnetic fields => ~100 keV — MeV+ synchrotron!




MeGaT: conceptual design

OTPC based technique

§ 30cm cubic volume (prototype)

§ four 50cm cubic or a single 100 cm X 100cm X 50(or
larger)cm volume (satellite)

§ 3-10 bar high pressure —
OExpected performance / —— \

8 High dynamic range: B \1\11)\1\1
0.3MeV -100 MeV Y :
§ Angle resolution (PSF) :

2° @MeV, 0.5° @100 MeV

Field cage

2023/4/26 MeGaT, Zhiyong ZHANG 11



Svanik/GRAMS

Detection Concept: MeV Gamma-rays

Charged Particle Gamma Ray: Compton Scattering Pair-Production

Anode wires/pads/pixel f Segmentation
(X-Y plane) i "
s

- --———----d—p/-

E-FIELD

LArTPC = Liquid Argon Time Projection Chamber

e Incoming gamma-ray Compton scatters or pair-produces in detector volume
o  Daughter particles ionize Argon atoms
o lonized electrons are drifted towards pixelated readout anode
o Event readout triggered via Argon scintillation




Svanik/GRAMS

Detection Concept: MeV Gamma-rays

Charged Particle Gamma Ray: Compton Scattering Pair-Production

Anode wires/pads/pixel :: Segmentation

/ (X-Y plane)
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Sample LArTPC
image from
MicroBOONe
neutrino experiment

LArTPC technology is already well-studied and widely-used in underground
dark matter and neutrino experiments

Cost-effective and easily scalable, with little to no dead volume

Excellent 3D track reconstruction without need for dense multi-layer design
Neutron background rejection via pulse shape of scintillation light




Why now? Energy Coverage — ~100 keV-MeV-GeV can only be
done from space ... and there’s a big gap there!! Especially at “MeV.

PICsIT AE/E = 0.5
... 100 mCrab

MPTEL

GRAMS (1 LDB flight, Tes = 35 days)

== GRAMS (Satellite with detector upgrades, Ter = 1 year)
COSI-X (3 ULDB flights, Tes = 300 days)
e-ASTROGAM (Satellite, T = 1 year)
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Differential sensitivities for different X-ray and y-ray instruments looking at an isolated

point source. Curves for the Chandra/ACIS-S, the Suzaku/HXD (PIN and GSO), the INTEGRAL/IBIS
(from the 2009 IBIS Observer’s Manual), and the ASTRO-H/HXI,SGD are the 30 sensitivity curves
for 100 ks exposures. A spectral bin with AE/E = 1 is assumed for Chandra and AE/E = 0.5

for the other instruments.



Not so o.k. for ~pevatrons, and LHAASO/CTA/SWGO sources

NSTAR BB VERTINGS (s workd
: AVIC SS 433

RXTE

Fermi-LAT | LHAASO KM2A
HESS | % LAAAGO WCDA Eastern Lobe

e ~CO‘SI sensitivity
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~PeV gamma-rays (even if from pion decay) => PeV+ electrons
=> For micro-milli Gauss magnetic fields => ~100 keV — MeV+ synchrotron!




Why now? Energy Coverage — ~100 keV-MeV-GeV can only be
done from space ... and there’s a big gap there!! Especially at “MeV.
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Differential sensitivities for different X-ray and y-ray instruments looking at an isolated
point source. Curves for the Chandra/ACIS-S, the Suzaku/HXD (PIN and GSO), the INTEGRAL/IBIS
(from the 2009 IBIS Observer’s Manual), and the ASTRO-H/HXI,SGD are the 30 sensitivity curves
for 100 ks exposures. A spectral bin with AE/E = 1 is assumed for Chandra and AE/E = 0.5
for the other instruments.



Why now? Energy Coverage — ~100 keV-MeV-GeV can only be
done from space ... and there’s a big gap there!! Especially at “MeV.
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Why now? Energy Coverage — ~100 keV-MeV-GeV can only be
done from space ... and there’s a big gap there!! Especially at “MeV.
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Differential sensitivities for different X-ray and y-ray instruments looking at an isolated
point source. Curves for the Chandra/ACIS-S, the Suzaku/HXD (PIN and GSO), the INTEGRAL/IBIS
(from the 2009 IBIS Observer’s Manual), and the ASTRO-H/HXI,SGD are the 30 sensitivity curves
for 100 ks exposures. A spectral bin with AE/E = 1 is assumed for Chandra and AE/E = 0.5
for the other instruments.



Why now? Energy Coverage — ~100 keV-MeV-GeV can only be
done from space ... and there’s a big gap there!! Especially at “MeV.
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Summary

We have an “MeV gap” problem in our current SED
coverage of VHE/Pevatron sources...

Limits our understanding of non-thermal processes
(better to actually measure a cutoff than rely on theorists
to predict it or draw a line from last NUSTAR point to
first Fermi point).

Filling it requires new space-based instrument(s) — not easy!
If it happens, COSI is a great start (>> COMPTEL).

But match what we are finding/will find in
CTA/LHAASO/SWGO era, need >> COSI.

LArTPC one avenue to achieve (e.g., GRAMS, actively
under development, prototype balloon flight spring 2026)



The high-energy break in the hard state of Cyg X-1: Another example of how the
SGD/ASTRO-H comes into its own for brighter sources (>101° erg cm? s1), e.g.,
enabling science that cannot be done by NuSTAR alone.

Unfolded Spectrum

' Cyg X-1, 30ksec, EQPAIR+ 511 keV
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The high-energy break in the hard state of Cyg X-1: Another example of how the
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Given previous SEDs, and high compactness of coronal region, one might think Cyg X-1
could never be significant TeV source... but
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-=-= Crab Nebula :
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FiG. 1.—Differential energy spectrum from Cygnus X-1 corresponding to
78.9 minutes of EOT between MJD 54,002.928 and 54,002.987 (2006 Sep-
tember 24). Also shown are the Crab Nebula spectrum, the best fit of a power
law to the data, and the 95% confidence level upper limits to the steady ~y-
ray flux (Rolke et al. 2005).

Albert et al 2007
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