The Maximum
Energy of Shock-
Accelerated
Cosmic Rays

REBECCA DIESING
‘ CDHY PEVATRON WORKSHOP
NEVIS LABS | OCT 8, 2025

INSTITUTE FOR
ADVANCED STUDY

&2 COLUMBIA UNIVERSITY | AS

IN THE CITY OF NEW YORK

Image: Tycho Supernova Remnant; Credit: Chandra X-Ray Observatory



Where do
cosmic rays
come from?
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Are supernova
remnants
responsible for
all galactic
cosmic rays?
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Summary

1. Can supernova remnants accelerate PeV protons?




Summary

1. Can supernova remnants accelerate PeV protons?

2. Are supernova remnants the main source of PeV cosmic
rays?




The standard paradigm of Galactic
cosmic ray acceleration

Protons and electrons are accelerated via diffusive shock
acceleration (DSA).*

P2 U1
R=—=—
P1 U2
Upstream (p,) For strong shocks, R = 4.

*Fermi54, Krymskii77, Axford+77, Bell78, Blandford+78
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The standard paradigm of Galactic
cosmic ray acceleration

Protons and electrons are accelerated via diffusive shock
acceleration (DSA).*
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Upstream (p,) For strong shocks, R = 4.
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The standard paradigm of Galactic
cosmic ray acceleration

DSA is a universal acceleration mechanism!
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The standard paradigm of Galactic
cosmic ray acceleration

DSA predicts power law distributions of particles.*
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For strong shocks, g = 2.

q

*Fermi54, Krymskii77, Axford+77, Bell78, Blandford+78
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The standard paradigm of Galactic
cosmic ray acceleration

DSA predicts power law distributions of particles.*

b x EF 9
- R+2
|

For strong shocks, g = 2.
If acceleration is efficient, spectra will be flatter (q < 2).

q

*Fermi54, Krymskii77, Axford+77, Bell78, Blandford+78




The maximum energy

LIMIT #1: AGE

The acceleration time must be shorter than the age of the
system.

D(E, B)
Tacc ™ 5 < Tage
Ysh

Drury83




The maximum energy

LIMIT #2: CONFINEMENT

The diffusion length must be smaller than the size of the
system.
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energy
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The diffusion length must be smaller
than the size of the system.
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LIMIT #2: CONFINEMENT
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The problem with the supernova
remnant paradigm

LIMIT #2: CONFINEMENT

Assuming Bohm diffusion (optimistic),
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. This is inconsistent with TeV observations of SNRs!
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A note about magnetic fields

Observations indicate that SNRs have enhanced magnetic fields (= 100uG compared
to ~3uG in the interstellar medium).*

*e.g., Bamba+05, Parizot+06, Morlino+10, Ressler+14
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CR-Driven magnetic field amplification

CRs excite plasma instabilities which lead to turbulent, amplified magnetic fields.

Caprioli+13

Bior/ Bo(t = 375w, ")
50

40
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xlefw,)

Resonant: CRs excite waves with A equal to their gyroradius; saturates when 6B/B ~ 1.*

Non-resonant (“Bell”): CR currents upstream excite waves with initially small A; saturates
when B-field pressure reaches equipartition with the net CR momentum flux.**

**e.g., Kulsrud+69, Skilling75, Bell78, Lagage+83; **Bell04, Zacharegkas+24

REBECCA DIESING 19




The problem with DSA

Observations point toward CR acceleration with spectra steeper than E2 (i.e., q > 2).




The problem with DSA

Observations point toward CR acceleration with spectra steeper than E2 (i.e., q > 2).

1. y-ray emission from Galactic SNRs suggest 2.2 < g < 2.6.
e.g., Caprioli11, Giordano+12, Saha+14, Aharonian+19
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The problem with DSA

Observations point toward CR acceleration with spectra steeper than E2 (i.e., q > 2).

1. y-ray emission from Galactic SNRs suggest 2.2 < g < 2.6.
e.g., Caprioli11, Giordano+12, Saha+14, Aharonian+19

2. Radio emission from young extragalactic SNe (radio SNe) suggest q = 3.
e.g., Chevalier+06, Chevalier+17, Soderberg+10, Soderberg+12, Kamble+16, Terreran+19
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The problem with DSA

Observations point toward CR acceleration with spectra steeper than E2 (i.e., q > 2).

1. y-ray emission from Galactic SNRs suggest 2.2 < g < 2.6.
e.g., Caprioli11, Giordano+12, Saha+14, Aharonian+19

2. Radio emission from young extragalactic SNe (radio SNe) suggest q = 3.
e.g., Chevalier+06, Chevalier+17, Soderberg+10, Soderberg+12, Kamble+16, Terreran+19

3. Observations of Galactic CRs require 2.3 S g < 2.4.
e.g., Evoli+19
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Steep spectra in simulations

Kinetic simulations performed in Haggerty+20 and Caprioli+20 naturally reproduce

steep spectra.
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Simulated particle spectra (color Nonlinear DSA
scale denotes time) prediction
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Enhanced compression ratios

Intriguingly, Haggerty+20 and Caprioli+20 also find fluid compression ratios
significantly larger than 4.
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The “postcursor”

Magnetic fluctuations generated by cosmic rays (CRs) in the
upstream retain their inertia over a non-negligible distance
when advected into the downstream.
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The “postcursor”

Magnetic fluctuations generated by cosmic rays (CRs) in the
upstream retain their inertia over a non-negligible distance
when advected into the downstream.

o Iﬁctuation_ drift CRs isotropize these magnetic fluctuations < a postcursor
' “at the local Alfvén of drifting magnetic fluctuations and CRs enhances
speed relative to escape from the acceleration region, raising the fluid
he Iasm‘i compression ratio while steepening the CR spectrum.




The “postcursor”

Equivalently, since particles are scattered by magnetic
fluctuations, the postcursor modifies the compression ratio
that particles “see.”

Uiq

U2 + VA 2

R =




]

The “postcursor’

Equivalently, since particles are scattered by magnetic
fluctuations, the postcursor modifies the compression ratio
that particles “see.”

Uiq

U2 + VA 2

R =

Efficient CR acceleration and thus B-field amplification yield
0.5 < v, 5/u, < 1 and spectra steeper than E-2.
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Modeling shock acceleration

Calculate the CR proton spectrum by solving the Parker transport equation.

Assume a fraction n of particles crossing the shock are injected into DSA.

Advection Diffusion Adiabatic compression Injection

REBECCA DIESING 30




Modeling shock acceleration

Calculate the CR proton spectrum by solving the Parker transport equation.

To include a postcursor, we consider {i(x), the velocity of magnetic scattering centers.

Advection Diffusion Adiabatic compression Injection
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Modeling shock acceleration

Calculate the CR proton spectrum by solving the Parker transport equation.

Assume Bohm diffusion (optimistic, but consistent with sims of parallel shocks*)

Advection Diffusion Adiabatic compression Injection

*e.g., Caprioli+14
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Modeling shock acceleration

Use a semi-analytic model of non-linear DSA which self-consistently accounts for
particle acceleration and magnetic field amplification.

Solve a transport equation for
magnetic turbulence.

See also Amato+06, Caprioli+10; Caprioli12.

33
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Modeling shock acceleration

Use a semi-analytic model of non-linear DSA which self-consistently accounts for
particle acceleration and magnetic field amplification.

Solve a transport equation for
magnetic turbulence.

o
Y
x

\.‘}
QS

Solve equations for conservation
of mass, energy, and momentum

See also Amato+06, Caprioli+10; Caprioli12.
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Modeling shock acceleration

Use a semi-analytic model of non-linear DSA which self-consistently accounts for
particle acceleration and magnetic field amplification.

Solve a transport equation for

Solve a transport equation for
magnetic turbulence.

nonthermal particles.
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Solve equations for conservation
of mass, energy, and momentum.

See also Amato+06, Caprioli+10; Caprioli12.
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Magnetic field amplification

We model magnetic field amplification by assuming contributions from both the
resonant streaming instability* and the non-resonant (Bell) instability.**

Solve the transport
equation for magnetic
turbulence.

For fast shocks characteristic of
SNRs, the Bell instability dominates

Solve a transport
equation for nonthermal
particles.

Ush FCR,1
2c ycr — 1

PB1,Benl =

Solve equations for
conservation of mass,
energy, and momentum.

*e.g., Kulsrud+69, Skilling75, Bell78, Lagage+83; **Bell04
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Magnetic field amplification

We model magnetic field amplification by assuming contributions from both the
resonant streaming instability* and the non-resonant (Bell) instability.**

Solve the transport
equation for magnetic
turbulence.

For fast shocks characteristic of
SNRs, the Bell instability dominates

Solve a transport
equation for nonthermal
particles.

Ush FCR,1
2¢ yor — 1

PB1,Benl =

Solve equations for
e T G TS, fast shocks = steep spectra

energy, and momentum.
*e.g., Kulsrud+69, Skilling75, Bell78, Lagage+83; **Bell04
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Comparison
to observations:

Fast shocks 2
steep spectra
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Can supernova
remnants reach
the knee?

Typically, no.
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Bracketing uncertainties

To account for uncertainties in the nature of magnetic field amplification (specifically,
what sets the saturation point of the non-resonant instability), we consider two cases:

CASE 1: THE "PESSIMISTIC” SCENARIO

Amplification is driven by diffusing
particles and therefore takes place near
the shock = Pg(x) ~ Pcgr(x) upstream.

B(x) Free-escape

boundary
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Bracketing uncertainties

To account for uncertainties in the nature of magnetic field amplification (specifically,
what sets the saturation point of the non-resonant instability), we consider two cases:

CASE 1: THE "PESSIMISTIC” SCENARIO  CASE 2: THE "OPTIMISTIC” SCENARIO

Amplification is driven by diffusing Amplification is driven by escaping
particles and therefore takes place near  particles and therefore takes place far
the shock = Pg(x) ~ Pcgr(x) upstream. upstream > P;(x) ~ constant upstream.

B(x) Free-escape

boundary
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Knee

Diesing23 (approx.)
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Can supernova
remnants
accelerate PeV
protons?

Optimistically, yes.
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Are supernova
remnants the
main source of
PeV cosmic rays?

No.

To accelerate PeV particles,
supernova remnants must
be exceptionally young,
fast, and expanding into
dense media.
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A consideration
for observers

Particles accelerated at early
times contribute to a higher

maximum energy at later
times, and may produce
observable gamma-ray
signatures.
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Are supernova
remnants the
main source of
PeV cosmic rays?

No.

In general, faster shocks are
more likely to be PeVatrons.
However, they also have
steeper spectra.
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Summary
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Summary

Can supernova remnants accelerate PeV protons? Yes.*

*Only under optimistic assumptions about B-field
amplification

TOnly young, fast CCSNe (vi, = 10,000 km s-1, nigyy = 1 cm3)

Are supernova remnants the main source of PeV cosmic
rays? No.

Even under optimistic assumptions, PeVatron SNRs are too
short-lived to reproduce the PeV flux

Fast shocks tend to produce steep particle spectra.




