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e Understanding particle acceleration
at non-relativistic shocks is important
for the origin of CRs.

e Energization via first order Fermi
acceleration.

e \What are the characterics that
describe a non-relativistic shock?

e Angle of inclination between the
shock velocity and the background

o




Hybrid simulations

e \We can study shocks through particle-in-cell
simulations.

e PIC simulations: consist in iteratively moving
particles on a grid according to the Lorentz &
force and self-consistently adjusting the ..
electromagnetic fields.
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The problem of ion injection at perpendicular shocks

¢ |t has been shown that parallel shocks
can efficiently accelerate particles.

e No self-consistent kinetic simulation has
reported large non-thermal tails of ions at
quasi-perpendicular shocks (8 ~ 90°).

e Using 1D-2D simulations, the efficiency
of ion acceleration drops significantly for
shock inclinations above 60°.

101 Caprioli and Spitkovsky, 2014 ApJ 783 91
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The case of SN1006

eSN1006 shows a bilateral symmetry, correlated with the  R-Rothenflugetal. 2004, A&A 425, 121131
geometry of the background magnetic field. ;

oX/y-ray emission is detected from the regions of SN1006
where the shock is quasi-parallel.

eObservations of SN1006 show a radio emission
azimuthally symmetric.

eMarginal detection by Fermi-LAT at GeV energies where
the shock is perpendicular (Lemoine-Goumard+24).
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Earth’s bow shock and Radio SNe

e Measurements of efficient ion acceleration in
the quasi-perpendicular regions of Earth’s Bow
Shock (8 > 45°, M < 20).

e |on acceleration and relativistic electrons at
foreshock disturbances of Earth’s Bow Shock.

e Spectral index of electrons accelerated by
Radio SNe: E~3.
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A. Lalti et al, Journal of Geo-physical Research:
Space Physics 127, e2022JA030454(2022).
§) 09/10/2025
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2D and 3D simulations

¢ 2D-3D simulations (dHybrid, Gargaté 2D My = 100 —=3D My = 100
et al. 2007) 6 = 90°.

e Downstream B field structures are @
different between 2D and 3D.

Upstream
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X — Xsh [c/wp] X — Xsh [c/wp]
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2D and 3D simulations spectra

® The key process occurs after the
first gyration.

e3D geometry determines a
different “porosity”.

elncluding B— field variations
along z enables the formation of
holes through which particles
can propagate.
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eThe higher M is the harder
the spectra.
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The porosity of 2D and 3D shock

Field lines Field lines

eThe key process occurs after
the first gyration.

e3D geometry determines a
different porosity.

eIncluding B— field variations
along z enables the formation =
of holes through which particles g8
can propagate. :

®| asagne vs maccheroni. i W LR
——3D My =30, Az = 0.1 ==3D My = 100, Az = 0.1
——3D My =60, Az = 0.1

eThe higher M is the harder §
the spectra.
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Acceleration mechanism

eParticles gyrate in the downstream, and in the upstream due to the orientation of the magnetic
field.

e Particles are accelerated through shock drift acceleration.

e SDA is extremely fast.

X = Xsh [c/wp]
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—nenomenaological Implications

e We found large ion acceleration in kinetic simulation of
perpendicular shocks for the first time.

e lons acceleration at @ = 90° could explain the hadronic y-ray
emission at GeV energies detected from SN 1006 ~ 100).




Can we produce a collisionless shock in a laboratory?

. . field and density,
® Yes — and it has already been achieved! compression

e In the laboratory, a high-powered laser
heats a solid target, launching a piston that
expands into an ambient upstream plasma.

e A compression wave forms quickly, within
1-2 Ion cyclotron times. As the shock
develops, it detaches from the piston. Once
decoupled, the shock Is sustained between
the uncompressed upstream ambient ions
and the ambient ions that have been swept
Into the downstream region.

e Fvidence of ion energization in laboratory
perpendicular shocks Schaeffer et al. 2019,
Yao et al. 2021, Yamazaki et al. 2022.
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Can we produce a collisionless shock in a laboratory?

Bow shock SNR Lab
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Can we see this effect in the laboratory?

- 2D M, =253=2 |

* [he acecieration Process iis exiremely _ — 3D Ma= 25,92 |
fast, with non-thermal particles in S TR P

t ~ 10w !

PR |
10°

2D M, — 19, 3 = 2|

e Can we achieve the interesting
regimes tested in our work in the lab? 210 :§§§5§§§§
e \We tested the parameters space that
can be reached in the laboratory,
looking for ion acceleration.

w—- 2DMy=25B=2 == 3DMy=25p8=5

—3DMA=25,B=2 —BDMA=28,B=18
e : : C
Conditions from simulations: ) /
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s M =y lc > 13 2D (dashed)
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Our recipe

e To identify the optimal conditions that meet our
requirements, we begin by considering the need for:
t ~10w;! - B,, assuming Top = 10 ns, with
o' =m/(eBy).

e Once B, is fixed we pick up n, to satisfy M, > 25,

with vy = Byl /Homn.

e We can place constraints on the upstream 7

required to achieve M, > 13, with ¢, = \/2ykgT/m.

Magnetic field for different w;?!
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Our recipe

e To identify the optimal conditions that meet our
requirements, we begin by considering the need for:
t ~10w;! - B,, assuming Top = 10 ns, with
o' =m/(eBy).

e Once B, is fixed we pick up n, to satisfy M, > 25,

with vy = Byl /Homn.

e We can place constraints on the upstream 7
required to achieve M, > 13, with ¢, = \/2ykgT/m.

Magnetic field for different w_* Density lower limit for Ma = 25, Texo/Nw

c =

@ ve, =500 km/s B v.,=1500 km/s
I v, =1000 km/s B v, =2000 km/s

Nevis Labs 16 09/10/2025



Our recipe

: : : G Temperature upper limit for Mg =13
e Jo identify the optimal conditions that meet our L oo | e v = 1500 K

requirements, we begin by considering the need for: B v =1000om/s| W ven=2000 ks
i . o :
t ~ 10w, — By, assuming 7,, = 10 ns, with

o' =m/(eBy).

e Once B, is fixed we pick up n, to satisfy M, > 25,
with vy = Byl /Homn.

e We can place constraints on the upstream 7
required to achieve M, > 13, with ¢, = \/2ykgT/m.

Magnetic field for different w_*

[ vs, =500 km/s I v, =1500 km/s
I v, =1000 km/s B v, =2000 km/s

6
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Comparison with previous experiments
e Where do previous experiments lie in the M, — M, parameter space?
e |s the 3D deviation from the 2D case a detectable signal?

e | aser time at the Omega Laser Facility in 2027.
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Take home messages

e Perpendicular shocks are efficient
particle accelerators.

¢ 3D simulations are necessary.

® The acceleration process is extremely
fast and can produce energetic
particles in a very short time.

e Spectra are steep and M dependent.

¢ \We can aim to probe ion acceleration
physics In laboratory experiments In
the near future.
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Commercial break

Unifying Cosmic-Ray Research:
Connecting Astroparticle Phenomenology with Advanced Theories, Simulations, and Observations
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el Phil Hopkins
ConFerence: G P CRINSTARILITIES NDARY PARTICLES
~ @& e o Peng Oh
Feb 23 - 25, 2026. i :
g Christoph Pfrommer
Image credits: M. Korsmeier Patrick Reichherzer

Conftact:
: Mateusz RuszKowsKi
ucr.pcts@gmail.com Cosmic rays play a central role in shaping galaxy evolution and driving .
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& for cosmic-ray physics and its broader astrophysical impact.
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e v, = 500 km/s: it is challenging to meet our requirements.

e v, = 1000 km/s: using H as a target requires T < 25 eV (lower than

achieved in previous experiments). A more feasible approach is to use a
He plasma, although full ionization requires a temperature of

approximately 80 eV. The required n, = 3.5 X 10" cm™,




