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Can Galactic CR sources
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Reach the knee at 3 PeV?
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Type la SNR

Particle spectra ahead of shock change significantly!

In total, the spectrum of accelerated particles is often softer  (Broseetal)

Proton spectrum 25% ahead of the shock Turbulence spectrum at the shock and 25% upstream
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Time-dependence limits E,,
Fast reduction of E,,;,
Lower cosmic-ray pressure

Weaker cosmic-ray feedback

10kyr Alfvenic |

Escape from far downstream . 60kyr Alfvenic

==: 60kyr Bohm
CR halo around SNR —— 0.3kyr Alfvenic

High-energy spectrum is soft log(p/myc)
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Realistic HE spectra are soft
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Fits data of individual objects |
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Turbulence

Fits to Galactic propagation
model
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Pevatrons only very early? |



What do we need? @

 Shock-shock collisions?

e Strong magnetic field?
* Dense gas shells?
e Clusters?

e Super-scattering or pre-existing turbulence?



Shock-shock collisions @

Wind bubble of CC SNRs are full of reflected shocks
Close shocks = excess compression = very hard spectrum
CR precursor length ~D/v,

Overlap time ~D/v,2 Acceleration time ~8D/v_, 2



Magnetic field @

Acceleration time t,..~ A /v2~1/B =» Want strong magnetic field
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Dense shells

Need lots of particles with high Band V, - Very early for CC SNR

High-density shells (1 M, at 10'® cm away from the star)
Gas density n=101°  =» high brightness =

Reaccelerated shock after shell passage propagates into
amplified field of previously escaped CRs =

%)

(Brose+ 25)



Clusters @

Star clusters = collective winds - long-lived termination shock

Wind speed ~1000 km/s
Warm and turbulent wind

First SN kills the structure - See local bubble



XY Plane at Z=55.57 XZ Plane at Y=-18.04
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Clusters: Local bubble
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Non-standard propagation

Trapping, Levy flights, localized strong deflections

All of these have good and bad aspects

¥ =100 t =200 ¥ =400

Non-Gaussian
diffusion
o=1.7

Gaussian
diffusion 3 SEREIXIIIYY

v
" vy
L] Y o v
EEE !l!!!!!:l::vvv r""v' ",
]

Aerdker ea 24

10! 10% 10° 10!
p/mo p/Po




Pre-existing turbulence D

Significantly enhance acceleration in hybrid simulations (trotta ea, Nakanotani ea)

Moderate effect in
fully kinetic PIC simulations (Fulat ea)
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Summary

Shock acceleration at SNRs is a complex, non-linear process
Maximum energy likely below the knee at 3 PeV
Ageing of the objects causes spectra to become softer over time

Simple recipes for increasing E___often fail to account for negative effects

max

Benefits of modified scattering and/or pre-existing turbulence is still unclear

E,..x IS best enhanced by a faster outflow



